Bayesian Networks

Leonid Zhukov

School of Applied Mathematics and Information Science National Research University Higher School of Economics

28.11.2013

НАЦИОНАПЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ унИверСИТЕТ

Basic Probability

- Joint probability $P(A, B)$
- Marginalization (sum rule): $P(A)=\sum_{B} P(A, B)$
- Conditioning (product rule): $P(A, B)=P(B \mid A) P(A)$
- Bayes Theorem

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}=\frac{P(A \mid B) P(B)}{\sum_{B} P(A \mid B) P(B)}
$$

Independence

- Independence:

$$
P(A, B)=P(A) P(B)
$$

- Conditional independence:

$$
\begin{aligned}
& P(A \mid B, C)=P(A \mid C) \\
& P(B \mid A, C)=P(B \mid C) \\
& P(A, B \mid C)=P(A \mid B, C) P(B \mid C)=P(A \mid C) P(B \mid C)
\end{aligned}
$$

Notation

$$
A \Perp B \mid C
$$

Basian Networks

- Directed graphical models
- Basian Networks are directed acyclic graphs, DAG
- Nodes - random variables
- Edges - dependencies between random variables (direct influence)

Basian Networks

- Each node associated with conditional distribution $\mathrm{P}(\mathrm{X} \mid$ parents $)$
- Parents - nodes, sending arrows to X
- Root nodes associated with priors $\mathrm{P}(\mathrm{X})$

Joint distribution

- $P\left(x_{1}, x_{2}\right)=P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right)$
- $P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{3} \mid x_{1}, x_{2}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right)$
- $P\left(x_{1}, \ldots x_{k}\right)=P\left(x_{k} \mid x_{1}, \ldots x_{k-1}\right) . . P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right)$
- Fully connected, link between every pair of nodes
- Missing edges means conditional independence
- Factorization properties of joint distribution

$$
P\left(x_{1} . . x_{k}\right)=\prod_{k=1}^{K} P\left(x_{k} \mid \text { parents }\left(x_{k}\right)\right)
$$

Directed graphical model

Factorization:
$P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}\right) P\left(x_{4} \mid x_{2}\right) P\left(x_{5} \mid x_{3}\right) P\left(x_{6} \mid x_{2}, x_{5}\right)$

Directed graphical model

Example

3 canonical graphs

$p(a, b, c)=p(a \mid c) p(b \mid c) p(c)$

$p(a, b, c)=p(a) p(b) p(c \mid a, b)$

$$
p(a, b, c)=p(a) p(c \mid a) p(b \mid c)
$$

Head-to-tail node

Independence:

$$
\begin{aligned}
& p(a, b)=\sum_{c} p(a, b, c)=\sum_{c} p(a) p(c \mid a) p(b \mid c)= \\
& =p(a) \sum_{c} p(b \mid c) p(c \mid a)=p(a) p(b \mid a) \neq p(a) p(b)
\end{aligned}
$$

not independent! $a \not \Perp \perp b$

Head-to-tail node

Conditional independence:

$$
p(a, b \mid c)=\frac{p(a, b, c)}{p(c)}=\frac{p(a) p(c \mid a) p(b \mid c)}{p(c)}=p(a \mid c) p(b \mid c)
$$

Conditionally independend: $a \Perp b \mid c$

Tail-to-tail node

Independence:

$$
p(a, b)=\sum_{c} p(a, b, c)=\sum_{c} p(a \mid c) p(b \mid c) p(c) \neq p(a) p(b)
$$

not independent! $a \not \nmid \perp b$

Tail-to-tail node

Conditional independence:

$$
p(a, b \mid c)=\frac{p(a, b, c)}{p(c)}=\frac{p(a \mid c) p(b \mid c) p(c)}{p(c)}=p(a \mid c) p(b \mid c)
$$

Conditionally independend: $a \Perp b \mid c$

Head-to-head node

Independence:

$$
\begin{array}{r}
p(a, b)=\sum_{c} p(a, b, c)=\sum_{c} p(c \mid a, b) p(a) p(b)= \\
=p(a) p(b) \sum_{c} p(c \mid a, b)=p(a) p(b)
\end{array}
$$

independent! $a \Perp b$

Head-to-head node

Conditional independence:

$$
p(a, b \mid c)=\frac{p(a, b, c)}{p(c)}=\frac{p(c \mid a, b) p(a) p(b)}{p(c)} \neq p(a \mid c) p(b \mid c)
$$

Conditionally not independend: $a \not \Perp b \mid c$

Conditional independence

- Binary variables, fuel system on a car
- B - battery, $B=1$ charged, $B=0$ dead
- F - fuel tank, $F=1$ full $F=0$ empty
- G - electric gauge, $G=1$ shows full tank, $G=0$ shows empty tank
- Prior distribution $\mathrm{P}(\mathrm{B}=1)=0.9, \mathrm{P}(\mathrm{F}=1)=0.9$
- Gauge is unreliable! Conditional on gauge read "full"

$$
\begin{aligned}
& P(G=1 \mid B=1, F=1)=0.8 \\
& P(G=1 \mid B=1, F=0)=0.2 \\
& P(G=1 \mid B=0, F=1)=0.2 \\
& P(G=1 \mid B=0, F=0)=0.1
\end{aligned}
$$

Conditional independence

- Observe fuel gauge, reads "empty $G=0$. Is tank really empty? $P(F=0 \mid G=0)$ - ?
- Bayes

$$
P(F=0 \mid G=0)=\frac{P(G=0 \mid F=0) P(F=0)}{P(G=0)}
$$

- $P(G=0 \mid F=0)=P(G=0 \mid B=0, F=0) P(B=0)+P(G=$ $0 \mid B=1, F=0) P(B=1)=0.9 * 0.1+0.8 * 0.9=0.81$
- $P(G=0)=\sum_{B \in 0,1} \sum_{F \in 0,1} P(G=0 \mid B, F) P(B) P(F)=0.315$
- $P(F=0 \mid G=0)=0.257>P(F=0)=0.1$

Conditional independence

- We also check (observe) battery, it is dead, $\mathrm{B}=0$
- Bayes

$$
P(F=0 \mid G=0, B=0)=\frac{P(G=0 \mid B=0, F=0) P(F=0) P(B=0)}{\sum_{F \in 0,1} P(G=0 \mid B=0, F) P(F) P(B=0)}
$$

- $P(F=0 \mid G=0, B=0)=0.111$
- State of fuel tank and battery became dependent through the gauge observation

Blocked path

- An observed TT or HT node, or
- A HH node which is not observed, nor any of its descendants is observed

D-separatioin

- A set of nodes A is said to be d-separated from a set of Types of Graphical Models п»ënodes B by a set of nodes C if every path from A to B is blocked when C is in the conditioning set.

Factorization

- Theorem: Factorization -> Cl If a probability distribution factorizes according to a directed acyclic graph, and if A, B and C are disjoint subsets of nodes such that A is d -separated from B by C in the graph, then the distribution satisfies $A \Perp B \mid C$.
- Theorem: CI -> Factorization If a probability distribution satisfies the conditional independence statements implied by d-separation over a particular directed graph, then it also factorizes according to the graph.

Factorization

Has local, wants global

- Cl statements are usually what is known by the expert
- The expert needs the model $p(x)$ in order to compute things
- The $\mathrm{Cl}->$ Factorization part gives $\mathrm{p}(\mathrm{x})$ from what is known (Cl statements)

Learning networks

- Network - joint probability distribution of random variables
- Structure can be learned, often set up "by hand"using expert knowldege
- Probabilites can be estimated from data using MAP/MLE

Probabilistic inference

- Evaluate probability of some set of variables given the values (observations) of another set.
- Exact inference of arbitrary Baysian network NP-hard
- Exact solutions for polytrees (no undirected cycles, exactly one undirected path between any two nodes)
- Approximate, numerical solutions, structure dependent

References

- Bayesian Networks without Tears. Eugene Charniak, AI magazine, vol 12, No4, 1991 pp 50-63
- A Tutorial on Learning With Bayesian Networks, David Heckerman, Technical Report MSR-TR-95-06, 2006.
- Pattern Recognition and Machine Learning, Chapter 6, Christopher Bishop, Springer 2006

