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Simulated annealing

Global optimization method (vs greedy strategies - local minimum)
Works for both continues and discrite optimization problems
Intuition from thermodynamics, physical annealing process
Algorithm:

1 generate trial point and evaluate function at that location.
2 accept new location if it reduces "energy"(improves solution)
3 accept some new location even not improving the solution
4 probability accepting non-improving location decreases with lowering

"temperture"
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Simulated annealing

Compute change of energy for a k-step ∆Ek = Ek − Ek−1:
If ∆Ek ≤ 0, accept the step
if ∆Ek > 0, accept the step with probability P(∆Ek) = e−∆Ek/Tk

Cooling schedule:
Tk = αT0/k
Tk = αT0/ log k
Tk = T0/α

k
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Traveling salesman problem

Travelling salesman problem: given a list of cities and the distances
between each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city? (NP-hard problem in
combinatorial optimization)
Simulated annealing algorithm:

Define energy cost function:

E =
N∑
i

√
(xi+1 − x2

i )+(yi+1 − yi )2

Select initial route (sequence of city labeles)
Iteratively imporve the route by trying local changes:
swap a pair of cities + reverse the section between them
always accept lower enegergy swap, sometimes higher enegery
reduce temperature with cooling schedule
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Traveling salesman problem
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MCMC connection

MCMC constructs Markov chain that generates random samples
distributed according to P(x)

Metropolis algorithm uses symmetric "candidate"distribution
Q(x , x∗) = Q(x∗, x)

Probabiity of "forward move"of the chain:

α(x , x∗) = min

[
1,

P(x∗)

P(x)

]
Consider Boltzman (Gibbs) distribution

P(x) =
1

Z
e−

E(x)
T

Probability of move

α(x , x∗) = min

[
1, e−

E(x∗)−E(x)
T

]
= min

[
1, e−

∆E
T

]
∆E ≤ 0 - always move, ∆E > 0 move with probability exp (−∆E

T )
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The Gibbs sampler

Goal: get random samples from joint multivariate density p(x1, ...xn) if
it is not known explicitely or hard to sample from
Given conditional univatiate distributions p(x1|x2...xn), p(x2|x1...xn),
..p(xn|x1...xn−1)

Bayesian inference, posterior distributions
Approximate joint distribution (histogram), compute averages
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Bivariate case

joint bivariate distribution
p(x , y)

marginal distribution
p(x) =

∫
p(x , y)dy

p(y) =
∫
p(x , y)dx

conditional probability
p(x |y) = p(x , y)/p(y)
p(y |x) = p(x , y)/p(x)

marginal from conditional distribution
p(x) =

∫
p(x |y)p(y)dy = Ep(y)[p(x |y)]

p(y) =
∫
p(y |x)p(x)dx = Ep(x)[p(y |x)]
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Gibbs sampler: bivariate case

Given: p(x |y), p(y |x)

Choose y0, t = 0

do "sampler scan"
xt ∼ p(x |y = yt)
yt+1 ∼ p(y |x = xt)

repeat k-times, Gibbs sequence (x0, y0), (x1, y1)...(xk , yk)
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Gibbs sampler
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Gibbs sampler

Algorithm: Gibbs sampler

Input: all marginals p(xi |x1..xi1 , xi+1, xn)

initialize x (0) = (x
(0)
1 , ...x

(0)
k ), t = 0

while t < T do
for i = 1 to n do

x
(t+1)
i ∼ p(xi |x (t+1)

1 , .., x
(t+1)
i−1 , x

(t)
i+1, ..., x

(t)
n )

end
t = t + 1

end

return {x0, x1, ...xN}
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Gibbs sampler
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MCMC connection

Metropolis-Hastings

α(x , x∗) = min

[
1,

p(x∗)Q(x |x∗)

p(x)Q(x∗|x)

]
use conditional p(x |x∗) as a candidate density Q(x |x∗)
(x t , y t)→ (x t+1, y t)

α =
p(x t+1, y t)p(x t |y t)
p(x t , y t)p(x t+1|y t)

=
p(x t+1, y t)

p(x t , y t)

p(x t , y t)

p(y t)

p(y t)

p(x t+1, y t)
= 1

MCMC algorithm with acceptance probability 1
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