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Patterns of relations

e Equivalence of positions and roles

Equivalnce classes:
© structural equivalence (same relationships to other nodes):

{A}, {B} {C}. {D}, {E,F}, {G}, {H, I}

@ automorphic equivalence (parallel structures):
{A} {C} {G}, {B,D}, {E,F.H,I}

© regular equivalence (identical patterns of ties with other classes):
{A}, {E,F,G,H,I}{B,C,D}

@ Approximate equivalence, similarity between nodes
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Structural equivalence

Definition

Structural equivalence: two vertices are structurally equivalent if their
respective sets of in-neighbors and out-neighbors are the same

u v ul u2 vl v2 w
1 1
ul 0 0 1 1 O
u2 0 0 1 1 0
vi 0 0 0 1 1
Y2 Y2 v2 0 0 1 0 1
w 0O 0 0 0 O

rows and columns of adjacency matrix of structually equivalent nodes are
identical, "connect to the same neighbors"
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Approximate equvivalence

e Unweighted graph - binary matrix, only 0/1

@ Eucledean distance between vectors

d(vi,v;) = \/Z (A = Aix)? + (A — Ag)?)
k

@ Hamming distance - number of positions where vectors are different
(Manhattan distance for binary matrix)
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Matrix properties

e Unweighted undirected graph (binary matrix, only 0 and 1)
o Ajk = A

o Y AL =Xk Au = ki

o nj =Y, AiAk = (A%); - number of shared neighbours

o (A) =1 Ak =%
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Hamming distance

@ Maximal possible:
max(d) = ki + kj

@ Normalized Hamming distance:

oo % N A A AR 2y
YN ki+kj k,'-f-kj k,'—l-kj
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Similarity measures

e Cosine similarity (vectors in n-dim space)

M Ai A .
U(Via V_/) = COS(H,:/') = viVj _ Zk ik kj njj

VI~ VS AAuvS ArAg  Vkiki

@ Jaccard similarity

NV (vi) NN ()|

J(vi,vj) = IV (vi) UN(v))|

@ Pearson correlation coefficient:

ri = > k(A — (A)) (A — (A))) _ nj — X
T VAl = (AN (A — (A))? \/k,- - By -4

kik;

n
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Similarity matrix

Graph Similarity matrix
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Graph isomorphism

Two graphs are isomorphic if there exists a one-to-one mapping of nodes,
such that for every edge in one graph, there is a unige edge in another
graph between the corresponding mapped vertices ( "the same structure")
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Graph automorphism

Automorhism is a one-to-one mapping of nodes, such that for every edge in
the graph, there is unique edge between the corresponding mapped
vertices. This is a form of graph symmetry, isomorphism to istelf.

~O—O~
w@— Q-
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Automorphic equivalence

Definition
Two vertices are automorphically equivalent if there exist an automorphic
mapping interchanging these nodes.

All vertcies relabeled forming isomorphic graph with two interchanged. All
distance between nodes are preserved
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Regular equivalence

Definition

Regular equivalence: Two vertices are regularly equivalent if they are
equally related to equivalent others.

) 7
1 2 :
O—>® 8

@ when coloring, connected to the nodes of the same color
@ ojj - similarity score

oij =« E AikAj10 ki
PN

"connect to the same colors"
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Regualar Equivalence

@ ojj - similarity score
oij =« E AicAjio ki
k,l

@ should have high o;; - self similarity

ojj =« E A,'kAj/Uk/ + 5,'J'
P

@ variation: vertices i/ and j are similar if / has a neighbor k similar to j

gjj = OéZA,-kO'kj +5,'j
k
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Equivalence

@ structural equivalence

structural equivalence > automorphic equivalence > regular equivalence
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Assortative Mixing

@ Assortative mixing (homophily) - tendency to associate and form
connections with those percieved to be similar.

Conover et al., 2011
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Mixing by node value

@ Let every node has a scalar value x; associated with it
@ Average and covariance over edges

Zi k,'X,' 1 1
0= S T Lk g LA

var = % ZAU(X,' - (x>)2 — ﬁ Z ki(xi — (x>)2

o Assortativity coefficient

kik;
cov E (AU 2m) XiXj

f = — =

var ) (k 5 — )X,XJ
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Node degree correlation

Nearest neighbours average connectivity of nodes with degree k:

(knn) = > K'P(K'|K)
o

1 Ol)

o—= [nternet 1998

T

s—=a Generalized BA y=2.2
+——= Fitness model y=2.25

PastorSatorras et al. , 2001
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Degree correlation
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Mixing by node degree

@ Assortative mixing by node degree, x; < k;

> (Afj - %) kik;
i (k,-é,-,- - %) kikj

r =

o Computations:

51 = Zi k,‘ =2m
S = Zi ki2
3= Zi k?
Se = > Aijkik;
@ Assoratitivity coefficient
. SeS1 — S3
535 - S3
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