Social diffusion

Leonid E. Zhukov

School of Applied Mathematics and Information Science
National Research University Higher School of Economics

21.04.2014
Two classes of models

- Viral propagation:
 - virus and infection, rumors, news
 - SI, SIS, SIR

- Decision based models:
 - adoption of innovation, joining a political party
 - Threshold models

We will talk about social diffusion, not a physical diffusion process
Diffusion of innovation

Everett Rogers (sociologist), "Diffusion of innovation" book, 1962
Theory that tries to explain how, why, at what rate new ideas, innovations, spread around

![Graph showing the diffusion of innovation with different adopter categories: Innovators (2.5%), Early Adopters (13.5%), Early Majority (34%), Late Majority (34%), and Laggards (16%).]

- Growth model of how new products get adopted
- Two types of agents, two key parameters:
 - p - innovation or spontaneous adoption rate (coefficient of innovation)
 - q - rate of imitation (coefficient of imitation)
- Let $F(t)$ fraction of agents adopted by time t

\[
F(t + 1) = F(t) + p(1 - F(t))\delta t + q(1 - F(t))F(t)\delta t
\]

\[
\frac{dF(t)}{dt} = (p + qF(t))(1 - F(t))
\]
Bass Diffusion model

- if only innovators, $q = 0$, exponential function:

$$\frac{dF(t)}{dt} = p(1 - F(t))$$

- if only immitators, $p = 0$, logistic function:

$$\frac{dF(t)}{dt} = qF(t)(1 - F(t))$$
Bass Diffusion model

Solution of Bass model - S-curve. When $F(0) = 0$

$$F(t) = \frac{1 - e^{-(p+q)t}}{1 + \frac{q}{p} e^{-(p+q)t}}$$

Empirical $p \sim 0.01 - 0.03$, $q \sim 0.3 - 0.5$, when t in years
Threshold models of Collective Behavior. Mark Granovetter, 1978

- Adoption of innovation, voting, applause, leaving social occasion, riots
- Group of people, each to make a decision
- Binary mutually exclusive decision: adopt/reject, stay/go, join/not join
- Every person has own preference, decision threshold
- Costs and benefits depends on how many others make which choice
- Dynamical proces with equilibrium outcome (final proportion of making each decision)

- Example: insitgator + crowd
 5, 5, 5, 5, 5, 5, 5, 5, 5
 1, 2, 3, 4, 5, 6, 7, 8, 9 (domino effect)
 2, 3, 4, 5, 6, 7, 8, 9
Threshold models

- Let i's threshold level $\theta(i)$, x - number of participants
- if $x \geq \theta(i)$ - join, $x < \theta(i)$ - not joint
- Let $f(x)$ - number of people with threshold level $\theta = x$
 $F(x)$ - number of people with $\theta \leq x$ (cumulative function)

$$F(x) = \sum_{x'}^x f(x')$$

- Initial state x_0 - already joined
- First time step:
 there are $F(x_0)$ people with threshold $\theta \leq x$ ready to join

$$x_1 = F(x_0)$$
$$x_2 = F(x_1)$$
$$x_{t+1} = F(x_t)$$

- Fixed point of the dynamical model

$$x^* = F(x^*)$$
Granovetter model

\[y = x \]
\[y = F(x) \]
Granovetter model

\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x-\mu}{\sigma\sqrt{2}}} \quad \text{and} \quad F(x) = \frac{1}{2} \left(1 + \text{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right)\right) \]
Granovetter model

![Graph 1](image1)

![Graph 2](image2)

![Graph 3](image3)

![Graph 4](image4)
Network coordination game

Let u and v are players, and A and b are possible strategies.

Payoffs:
- if u and v both adopt behavior A, each get payoff $a > 0$
- if u and v both adopt behavior B, each get payoff $b > 0$
- if u and v adopt opposite behavior, each get payoff 0
Network model

Node v to make decision A or B, p - portion of type A neighbors
To accept A:

$$a \cdot p \cdot d > b \cdot (1 - p) \cdot d$$
$$p > b/(a + b)$$
Cascades

\[a = 3, \quad b = 2, \quad \text{threshold } p > \frac{2}{5} \]
Linear threshold model

- Influence comes only from NN $N(i)$ nodes, w_{ij} influence $i \rightarrow j$
- Require $\sum_{j \in N(i)} w_{ji} \leq 1$
- Each node has a random acceptance threshold from $\theta_i \in [0, 1]$
- Activation: fraction of active nodes exceeds threshold
 \[
 \sum_{active \ j \in N(i)} w_{ji} > \theta_i
 \]
- Initial set of active nodes A_o, iterative process with discrete time steps
- Progressive process, only nonactive \rightarrow active
Maximal Cascades

- Initial set of active nodes A_o
- Cascade size $\sigma(A_o)$ - number of active nodes when propagation stops
- Find k-set of nodes A_o that produces maximal cascade $\sigma(A_o)$
- k-set of "maximum influence" nodes
- NP-hard
Submodular functions

- Set function f is submodular, if for sets S, T and $S \subseteq T$, $\forall v \notin T$

 \[f(S \cup \{v\}) - f(S) \geq f(T \cup \{v\}) - f(T) \]

- Function of diminishing returns
- Function f is monotone, $f(S \cup \{v\}) \geq f(S)$

Theorem

Let F be a monotone submodular function and let S^* be the k-element set achieving maximal f. Let S be a k-element set obtained by repeatedly, for k-iterations, including an element producing the largest marginal increase in f.

\[f(S) \geq (1 - \frac{1}{e})f(S^*) \]

Nemhauser, Wolsey, and Fisher, 1978
Influence maximization

- $\sigma()$- submodular function (D. Kempe, J. Kleinberg, E. Tardos, 1993)

$$\sigma(S) \geq (1 - \frac{1}{e})\sigma(S^*)$$

- Greedy algorithm for maximum influence set finds a set S such that its influence set $\sigma(S)$ is within $1/e = 0.367$ from the optimal (maximal) set $\sigma(S^*)$, $\sigma(S) \geq 0.629\sigma(S^*)$
Approximation algorithm

\textbf{Algorithm:} Greedy optimization

Input: Graph $G(V,E)$, k

Output: Maximum influence set S

Set $S \leftarrow 0$

\begin{algorithmic}
\For{$i = 1 : k$}
 \State select $v = \arg \max_{u \in V \setminus S} (\sigma(S \cup \{u\}) - \sigma(S))$
 \State $S \leftarrow S \cup \{v\}$
\EndFor
\end{algorithmic}
network: collaboration graph
10,000 nodes, 53,000 edges
References

- Maximizing the Spread of Influence through a Social Network, D. Kempe, J. Kleinberg, E. Tardos, 2003
- Influential Nodes in a Diffusion Model for Social Networks, D. Kempe, J. Kleinberg, E. Tardos