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Lecture outline

1 Overlapping commmunities
Clique percolation method

2 Heuristic methods
Label propagation
Fast community unfolding

3 Random walk methods
Walktrap
Nibble
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Community detection

Community detection:
Vertex clustering (vertex similarity)
Graph partitioning (sparse cuts)

image from W. Liu , 2014
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Overlapping communities

Palla, 2005
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Overlapping communities

Palla, 2005
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k-clique community

k-clique is a clique (complete subgraph) with k nodes
k-clique community a union of all k-cliques that can be reached from
each other through a series of adjacent k-cliques
two k-cliques are said to be adjacent if they share k − 1 nodes.

Adjacent 4-cliques
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k-clique percolation

Find all maximal cliques
Create clique overlap matrix
Threshold matrix at value k − 1

Communities = connected components

Palla, 2005
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k-clique percolation

Palla, 2005
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k-clique percolation

k = 4 k = 5

Palla, 2005
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k-clique percolation

Palla, 2005
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Label propagation

Algorithm:
Initialize labels on all nodes
Randomized node order
For every node replace its label with occurring with the highest
frequency among neighbors (ties are broken uniformly randomly).
If every node has a label that the maximum number of their neighbors
have, then stop the algorithm

Raghavan, 2007
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Label propagation

image from Lab41 blog
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Fast community unfolding

”The Louvain method”
Heuristic method for greedy modularity optimization
Find partitions with high mudularity
Multi-level (multi-resolution) hierarchical scheme
Scalable

V. Blondel et.al., 2008
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Fast community unfolding

Algorithm
Assign every node to its own community
Phase I

For every node evaluate modularity gain from removing node from its
community and placing it in the community of its neighbor
Place node in the community maximizing modularity gain
repeat until no more improvement (local max of modularity)

Phase II
Nodes from communities merged into "super nodes"
Weight on the links added up

Repeat until no more changes (max modularity)

V. Blondel et.al., 2008
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Fast community unfolding

V. Blondel et.al., 2008
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Fast community unfolding

V. Blondel et.al., 2008
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Walktrap community

Walktrap
Consider random walk on graph

At each time step walk moves to NN uniformly at random Pij =
Aij

d(i) „
P = D−1A, Dii = diag(d(i))

Pt
ij - probability to get from i to j in t steps, t � tmixing

Assumptions: for two i and j in the same community Pt
ij is high

if i and j are in the same community, then ∀k , Pt
ik ≈ Pt

jk

Distance between nodes:

rij(t) =

√√√√ n∑
k=1

(Pt
ik − Pt

jk)
2

d(k)
= ||D−1/2Pt

i − D−1/2Pt
j ||

P. Pons and M. Latapy, 2006
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Walktrap

Computing node distance rij

Direct (exact) computation: Pt
ij = (Pt)ij

Approximate computation (simulation):
– Compute K random walks of length t starting form node i
– Approximate Pt

ik ≈
Nik
K , number of walks end up on k

Distance between communities:

Pt
Cj =

1

|C |
∑
i∈C

Pt
ij

rC1C2(t) =

√√√√ n∑
k=1

(Pt
C1k
− Pt

C2k
)2

d(k)
= ||D−1/2Pt

C1
− D−1/2Pt

C2
||

P. Pons and M. Latapy, 2006
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Walktrap

Algorithm (hierachical clustering)
Assign each vertex to its own community
Compute distance between adjacent vertices
Choose two "closest"communities and merge them
update distance between communities

After n − 1 steps finish with one community

P. Pons and M. Latapy, 2006
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Walktrap

P. Pons and M. Latapy, 2006
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Local clustering algorithm

Conductance of a vertex set S

φ(S) =
cut(S ,V \S)

min(vol(S), vol(S\V ))

where vol(S) =
∑

i∈S ki - sum of all node degrees in the set

Example: cut(S) = 7, vol(S) = 33, vol(V \S) = 11, φ(S) = 7/11
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Local clustering algorithm

The probability that one-step random walk starting in the cluster will
leave the cluster = conductance of the set
(it is a probability of picking up an edge from the smaller set that
crosses the cut.)
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Local clustering algorithm

Given a vertex find a small cluster around the vertex in time
proportional to the size of the cluster
Short random walks t - steps
”Lazy” random walk operator:

M = (AD−1 + I )/2, D = diag(d(i))

Distribution of random walk:

p(t) = Mtp(0)

D. Spielman et.al, 2008
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Local clustering algorihtm

Spielman, 2003/2008

Algorithm: Nibble

Input: Graph G , q0(v0), φ0

Output: Graph partition S

for t = 1 : tm do
qt = Mrt−1;
rt(i) = qt(i) if qt(i)/d(i) > ε, else 0;

order i from large to small based on qtm(i)/d(i);
Compute conductance, sweep φ(S{i = 1..j});
If there is j : φ(Sj) < φ0, return S

D. Spielman et al, 2008
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Multiple clusters

D. Gleich, 2013
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Real world communities

J. Leskovec, K. Lang, 2010
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Community detection algorithms

Fortunato, 2010
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Summary

Lectures 1-10
Network characteristics:
– Power law node degree distribution
– Small diameter
– High clustering coefficient (transitivity)
Network models:
– Random graphs
– Preferential attachement
– Small world
Centrality measures:
– Degree centrality
– Closeness centrality
– Betweenness centrality
Link analysis:
– Page rank
– HITS
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Summary

Lectures 1-10
Structural equivalence
– Vertex equivalence
– Vertex similarity
Assortative mixing
– Assortative and disassortative networks
– Mixing by node degree
– Modularity
Network structures:
– Cliques
– k-cores
Network communities:
– Similarity (vertex) clustering
– Graph partitioning
– Overlapping communities
– Heuristic and random walk methods
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