Epidemics

Leonid E. Zhukov

School of Data Analysis and Artificial Intelligence
Department of Computer Science
National Research University Higher School of Economics

Structural Analysis and Visualization of Networks

Lecture outline

- Epidemic models
 - SI model
 - SIS model
 - SIR model

- 2 Branching process
 - Galton-Watson process

Epidemic dynamics models

- Mathematical epidimiology
- W. O. Kermack and A. G. McKendrick, 1927
- Deterministic compartamental model (population classes) $\{S, I, T\}$
- S(t) succeptable, number of individuals not yet infected with the disease at time t
- I(t) infected, number of individuals who have been infected with the disease and are capable of spreading the disease.
- R(t) recoverd, number of individuals who have been infected and then recovered from the disease, can't be infected again or to transmit the infection to others.
- Fully-mixing model
- Closed population (no birth, death, migration)
- Models: SI, SIS, SIR, SIRS,...

• S(t) -susceptible , I(t) - infected

$$S \longrightarrow I$$

$$S(t) + I(t) = N$$

- \bullet β infection/contact rate, number of contacts per unit time
- Infection equation:

$$I(t + \delta t) = I(t) + \beta \frac{S(t)}{N} I(t) \delta t$$

$$\frac{dI(t)}{dt} = \beta \frac{S(t)}{N} I(t)$$

- Fractions: i(t) = I(t)/N, s(t) = S(t)/N
- Equations

$$\frac{di(t)}{dt} = \beta s(t)i(t)$$

$$\frac{ds(t)}{dt} = -\beta s(t)i(t)$$

$$s(t) + i(t) = 1$$

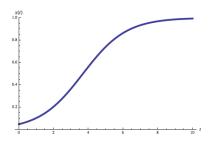
• Differential equation, $i(t = 0) = i_0$

$$\frac{di(t)}{dt} = \beta(1 - i(t))i(t)$$

Logistic growth function

Solution:

$$i(t) = \frac{i_0}{i_0 + (1 - i_0)e^{-\beta t}}$$



• Limit $t \to \infty$

$$i(t)
ightarrow 1 \ s(t)
ightarrow 0$$

SIS model

• S(t) -susceptable , I(t) - infected,

$$S \longrightarrow I \longrightarrow S$$

 $S(t) + I(t) = N$

- ullet β infection rate (on contact), γ recovery rate
- Infection equations:

$$\frac{ds}{dt} = -\beta si + \gamma i$$

$$\frac{di}{dt} = \beta si - \gamma i$$

$$s + i = 1$$

• Differential equation, $i(t = 0) = i_0$

$$\frac{di}{dt} = (\beta - \gamma - i)i$$

SIS model

Solution

$$i(t) = (1 - \frac{\gamma}{\beta}) \frac{C}{C + e^{-(\beta - \gamma)t}}$$

where

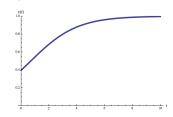
$$C = \frac{\beta i_0}{\beta - \gamma - \beta i_0}$$

• Limit $t \to \infty$

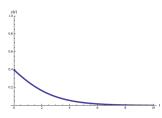
$$eta > \gamma \quad , \quad i(t) o (1 - rac{\gamma}{eta})$$
 $eta < \gamma \quad , \quad i(t) = i_0 e^{(eta - \gamma)t} o 0$

Logistic function

•
$$\beta > \gamma$$
, $i(t) \rightarrow (1 - \frac{\gamma}{\beta})$



•
$$\beta < \gamma$$
, $i(t) = i_0 e^{(\beta - \gamma)t} \rightarrow 0$



• S(t) -susceptable , I(t) - infected, R(t) - recovered

$$S \longrightarrow I \longrightarrow R$$

$$S(t) + I(t) + R(t) = N$$

- ullet β infection rate, γ recovery rate
- Infection equation:

$$\frac{ds}{dt} = -\beta si$$

$$\frac{di}{dt} = \beta si - \gamma i$$

$$\frac{dr}{dt} = \gamma i$$

$$s + i + r = 1$$

Equation

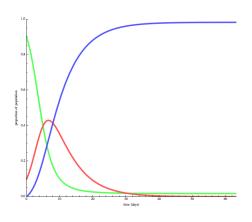
$$\frac{ds}{dt} = -\beta s \frac{dr}{dt} \frac{1}{\gamma}$$

$$s = s_0 e^{-\frac{\beta}{\gamma}r}$$

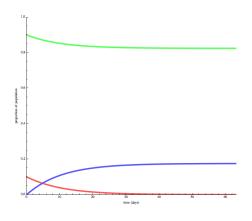
$$\frac{dr}{dt} = \gamma (1 - r - s_0 e^{-\frac{\beta}{\gamma}r})$$

Solution

$$t = \frac{1}{\gamma} \int_0^r \frac{dr}{1 - r - s_0 e^{-\frac{\beta}{\gamma}r}}$$



- $\frac{\beta}{\gamma} = 4$ $i_0 = 0.1$



- $\frac{\beta}{\gamma} = 0.5$ $i_0 = 0.1$

Equation

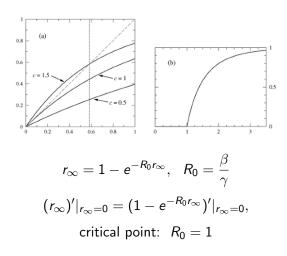
$$\frac{dr}{dt} = \gamma (1 - r - s_0 e^{-\frac{\beta}{\gamma}r})$$

• Limits: $t \to \infty$, $\frac{dr}{dt} = 0$, $r_{\infty} = const$,

$$1 - r_{\infty} = s_0 e^{-\frac{\beta}{\gamma} r_{\infty}}$$

• Initial conditions: r(0) = 0, i(0) = c/N, $s(0) = 1 - c/N \approx 1$

$$1-r_{\infty}=e^{-\frac{\beta}{\gamma}r_{\infty}}$$



- r_{∞} the total size of the outbreak
- Epidemic threshold

Epidemics:
$$R_0 > 1$$
, $\beta > \gamma$, $r_\infty = const > 0$

No epidemics:
$$R_0 < 1, \quad \beta < \gamma \quad , \quad r_\infty \to 0$$

Basic reproduction number

$$R_0 = \frac{\beta}{\gamma}$$

It is average number of people infected by a person before his recovery

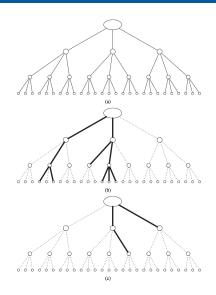
$$R_0 = E[\beta \tau] = \beta \int_0^\infty \gamma \tau e^{-\gamma \tau} d\tau = \frac{\beta}{\gamma}$$

Model of contagion

Simple model of contagion (decease transmission)

- 1st-wave: first infected person enters the population and transmits to each person he meets with probability *p*. Suppose he meets *k* people while contagious
- 2nd-wave: Each infected person from 1st wave meets k new people and independently transmits infection with probability p
- 3rd-wave:

This is Galton-Watson branching stochastic process (Proposed by Francis Galton 1889 as a model for extinction of family names)



Random branching process:

- let ξ_i^n number of transmitted infections by *i*th node on level *n*
- let Z_n number of infected on level n, $Z_0 = 1$. Then:

$$Z_{n+1} = \sum_{i=1}^{Z_n} \xi_i^{(n)}$$

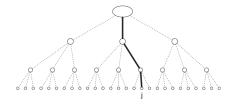
- If each node has k neighbors, transmits infection with probability p, Average number of infected people $E[\xi_i^n] = pk = R_0$ basic reproductive number
- Recursion

$$E[Z_{n+1}] = E[\sum_{i=1}^{Z_n} \xi_i^{(n)}] = E[\xi_i^{(n)}] \ E[Z_n] = pk \ E[Z_n]$$

$$E[Z_n] = (pk)^n = R_0^n$$

Galton-Watson branching random process:

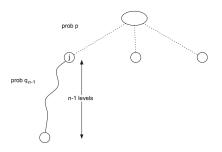
- if $R_0 = 1$, the mean of number of infected nodes does not change
- if $R_0 > 1$, the mean grows geometrically as R_0^n
- ullet if $R_0 < 1$, the mean shrinks geometrically as R_0^n



 $R_0 = 1$ - point of phase transition

Extinction probability

- let q_n probability that infection persists n steps (levels of the tree)
- pq_{n-1} probability that spreads through one first contact and then survives n-1 levels

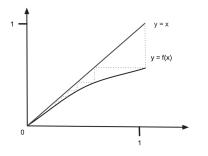


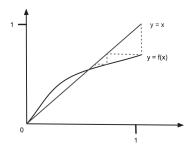
• $(1 - pq_{n-1})^k$ - probability that will not spread through any of the subtries

$$(1 - pq_{n-1})^k = 1 - q_n$$

• Recurrence $(q_n$ - probability that infection persists through n steps)

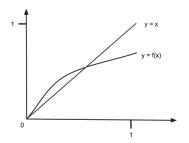
$$q_n = 1 - (1 - pq_{n-1})^k$$





• limiting probability $q^* = \lim_{n \to \infty} q_n$

$$q^* = 1 - (1 - pq^*)^k$$



Slope:

$$pk(1-pq)^{k-1}\big|_{q=0}=1$$

• When $R_0 = pk > 1$, there is a non zero probability of infection persists

07.04.2015

References

- A Contribution to the Mathematical Theory of Epidemics. , Kermack, W. O. and McKendrick, A. G. , Proc. Roy. Soc. Lond. A 115, 700-721, 1927.
- The Mathematics of Infectious Disease, Herbert W. Hethcote, SIAM Review, Vol. 42, No. 4, p. 599-653, 2000