Spatial Model of Segregation

Leonid E. Zhukov

School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics

Structural Analysis and Visualization of Networks

"Dynamic Models of Segregation", Thomas Schelling, 1971

- Micro-motives and macro-behavior
- Personal preferences lead to collective actions
- Global patterns of spatial segregation from homophily at a local level
- Segregated race, ethnicity, native language, income
- Cities are strongly racially segregated. Are people that racists?
- Agent based modeling: agents, rules (dynamics), aggregation

Integrated pattern Segregated pattern

Racial segregation

New York

Chicago

Miami

Seattle

Los Angeles

Bay area high school graduates

Leonid E. Zhukov (HSE)

Lecture 19

02.06.2015 5 / 24

2012 US Presidential Elections Map

- Population consists of 2 types of agents
- Agent reside in the cells of the grid (2-dimensional geography of a city), 8 neighbors
- Some cells contain agents, some unpopulated
- Every agent wants to have at least some fraction of agents (threshold) of his type as neighbor (satisfied agent)
- On every round every unsatisfied agent moves to a satisfactory empty cell.
- Continues until everyone is satisfied or can't move

satisfied agent

1234X5678

unsatisfied agent

• preference threshold $\lambda = 3/7$

00 0 0 # # 0 0 # # # # 0 # 0 0 # # 0 0 # 000# 0 0 0 0 000 # 0 # # 0 0 ŧ 0 0 # 0 0 0 0 0 # # 0 0 0 # # 0 0 # 0 00 0 # # 0 # # #0 0 0 # # # 0 0 # # 0 0 0 ŧ 0 0 0 0 00 0

Fig.7

Fig. 10

T. Schelling, 1971

Spatial segregation

vacancy 5%, tolerance $\lambda = 0.5$

L. Gauvin et.al. 2009

Spatial segregation

L. Gauvin et.al. 2009

Leonid E. Zhukov (HSE)	Lecture 19	02.06.2015 11 /
------------------------	------------	-----------------

• N - nodes, θ - fraction of occupied by A and B

$$n_A + n_B = \theta \cdot N$$

• Proportion of "unlike" nearest neighbors, $k_i = \#NN$

$$P_i = \begin{cases} \#n_B/k_i, \text{ if } i \in A\\ \#n_A/k_i, \text{ if } i \in B \end{cases}$$

• Utility function, λ - sensitivity (tolerance threshold) level

$$u_i = \begin{cases} 1, \text{if } P_i \leq \lambda \\ 0, \text{if } P_i > \lambda \end{cases}$$

Every node moves to maximize its utility

Spatial segregation

(b)

 (\mathbf{X}) X

X X

0

- time steps 1.. T
- At every time step randomly select an agent, compute utility
- If utility is u = 0 move to an empty location to maximize utility
- Movements: 1) random location 2) nearest available location
- Repeat until either all utilities are maximized $\sum_{i} u_{i} = \theta N$ or reaches "frozen" state, no place to move, then $\sum_{i} u_{i} < \theta N$
- Total utility of society

$$U=\sum_i u_i$$

Measuring segregation

• Schilling's solid mixing index

$$M=\frac{1}{n_A+n_B}\sum_i P_i$$

• Freeman's segregation index

$$F = 1 - \frac{e^*}{E(e^*)}$$

 $e^* = \frac{e_{AB}}{(e_{AB}+e_{AA}+e_{BB})}$ - observed proportion of between group ties, $E(e^*) = \frac{2n_A n_B}{(n_A+n_B)(n_A+n_B-1)}$ - expected proportion for random ties • Assortative mixing

$$Q = \frac{1}{2m} \sum_{ij} (A_{ij} - \frac{k_i k_j}{2m}) \delta(c_i, c_j)$$

Fixed degree k = 10 neighboring graphs: regular, random, scale-free, fractal

Arnaud Banos, 2010

 $\lambda = 0.5, \theta = 0.8$

 $\nu=10\%$ of random "noise" added for decision to avoid freezes

$\lambda = 0.3, \theta = 0.8$ Sensitivity to initial conditions

 $\nu = 0.1, \theta = 0.8, \lambda = 0..0.5$

- Agents of two types A, B
- $\sigma_i = \pm 1$ if site *i* is occupied, $\sigma_i = 0$ if empty
- System state vector: $\sigma = (\sigma_1...\sigma_N)$
- Adjacency matrix A_{ij}
- Fraction of vacant sites $\theta = 1/N \sum_i (1 |\sigma_i|)$
- Proportion of "unlike" neighbours

$$P_{i} = \frac{\sum_{j} A_{ij} (|\sigma_{i}\sigma_{j}| - \sigma_{i}\sigma_{j})}{\sum_{j} A_{ij} |\sigma_{i}\sigma_{j}|}$$

- Spatial segregation is taking place even though no individual agent is actively seeking it (minor preferences, high tolerance)
- Network structure does affect segregation
- Fixed characteristics (race) can become correlated with mutable (location)

- Dynamic Models of Segregation, Thomas C. Schelling, 1971
- Segregation in Social Networks, Linton Freeman, 1978
- Gauvin L, Vannimenus J, Nadal JP. Phase diagram of a Schelling segregation model. The European Physical Journal B, 70:293-304, 2009
- Arnaud Banos. Network effects in Schelling's model of segregation: new evidences from agent-based simulations. 2010