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Graph-theoretic measures

Which vertices are important?

M.Grandjean, 2014
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Graph-theoretic measures

The eccentricity ε(v) of a vertex v is the maximum distance between
v and any other vertex u of the graph ε(v) = maxu∈V d(u, v)

Graph diameter is the maximum eccentricity d = maxv∈V ε(v)

Graph radius is the minimum eccentricity r = minv∈V ε(v).
A point v is a central point of a graph if the eccentricity of the point
equals the graph radius ε(v) = r

from Eric Weisstein MathWorld
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Graph-theoretic measures

Graph center is a set of of vertices with graph eccentricity equal to
the graph radius ε(v) = r - set of central points
Graph periphery is a set of vertices that have graph eccentricities
equal to the graph diameter ε(v) = d

from Eric Weisstein MathWorld
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Centrality Measures

Sociology.
Most "important"actors: actor location in the social network

Actor centrality - involvement with other actors, many ties, source or
recipient. Undirected network.
Actor prestige - recipient (object) of many ties, ties directed to an
actor. Directed network.

In this lecture: undirected graphs, symmetric matrix Aij = Aji , A = AT

Linton Freeman, 1979
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Three graphs

Star graph Circle graph Line Graph
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Degree centrality

Degree centrality: number of nearest neighbours

CD(i) = k(i) =
∑
j

Aij =
∑
j

Aji

Normalized degree centrality

C ∗D(i) =
1

n − 1
CD(i)

High centrality degree -direct contact with many other actors
Low degree - not active, peripheral actor
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Closeness centrality

Closeness centrality: how close an actor to all the other actors in network

CC (i) =
1∑

j d(i , j)

Normalized closeness centrality

C ∗C (i) = (n − 1)CC (i)

Actor in the center can quickly interact with all others, short
communication path to others, minimal number of steps to reach others

[*** Harmonic centrality =
∑

j
1

d(i ,j) ***]

Alex Bavelas, 1948
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Betweenness centrality

Betweenness centrality: number of shortest paths going through the actor
σst(i)

CB(i) =
∑
s 6=t 6=i

σst(i)

σst

Normalized betweenness centrality

C ∗B(i) =
2

(n − 1)(n − 2)
CB(i)

Probability that a communication from s to t will go through i (geodesics)
Linton Freeman, 1977
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Eigenvector centrality

Importance of a node depends on the importance of its neighbors
(recursive definition)

vi ←
∑
j

Aijvj

vi =
1

λ

∑
j

Aijvj

Av = λv

Select an eigenvector associated with largest eigenvalue λ = λ1, v = v1

Phillip Bonacich, 1972.
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Centrality examples

Closeness centrality

from www.activenetworks.net
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Centrality examples

Betweenness centrality

from www.activenetworks.net
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Centrality examples

Eigenvector centrality

from www.activenetworks.net

Leonid E. Zhukov (HSE) Lecture 5 10.02.2015 13 / 22



Katz status index

Weighted count of all paths coming to the node: the weight of path of
length n is counted with attenuation factor βn, β < 1

λ1

ki = β
∑
j

Aij + β2
∑
j

A2
ij + β3

∑
j

A3
ij + ...

k = (βA + β2A2 + β3A3 + ...)e =
∞∑
n=1

(βnAn)e = (
∞∑
n=0

(βA)n − I)e

∞∑
n=0

(βA)n = (I− βA)−1

k = ((I− βA)−1 − I)e

(I− βA)k = βAe

k = β(I− βA)−1Ae
Leo Katz, 1953
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Bonacich centrality

Two-parametric centrality measure c(α, β)
β - degree to which an individual status is a function of the statuses of
those to whom he is connected (can be positive if connected to powerful
and negative, if connected to powerless )
α - normalization parameter

ci (α, β) =
∑
j

(α + βcj)Aij

c = αAe + βAc

(I− βA)c = αAe

c = α(I− βA)−1Ae

α - found from normalization ||c||2 =
∑

c2i = 1

Phillip Bonacich, 1987
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Modified versions

Katz centrality (Newman):

xi = α
∑
j

Aijxj + βi

x = αAx + β

x = (I− αA)−1β

Alpha-centrality (Bonacich):

xi = α
∑
j

Aijxj + 1

x = αAx + e

x = (I− αA)−1e

Bonacich, 2001,Newman, 2010
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Centrality examples

A) Degree centrality
B) Closeness centrality
C) Betweenness centrality
D) Eigenvector centrality
E) Katz centrality
F) Alpha centrality

from Claudio Rocchini
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Centralization

Centralization (network measure) - how central the most central node in
the network in relation to all other nodes.

Cx =

∑N
i [Cx(p∗)− Cx(pi )]

max
∑N

i [Cx(p∗)− Cx(pi )]

Cx - one of the centrality measures
p∗ - node with the largest centrality value
max - is taken over all graphs with the same number of nodes (for degree,
closeness and betweenness the most centralized structure is the star graph)

Linton Freeman, 1979
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Prestige

Prestige - measure of node importance in directed graphs

Degree prestige kin(i)

Proximity prestige (closeness)
Status or Rank prestige (Katz, Bonacich)
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Metrics comparison

Pearson correlation coefficient

r =

∑n
i=1(Xi − X̄ )(Yi − Ȳ )√∑n

i=1(Xi − X̄ )2
√∑n

i=1(Yi − Ȳ )2

Shows linear dependence between variables, −1 ≤ r ≤ 1
(perfect when related by linear function)
Spearman rank correlation coefficient (Sperman’s rho):
Convert raw scores to ranks - sort by score: Xi → xi , Yi → yi

ρ = 1−
6
∑n

i=1(xi − yi )
2

n(n2 − 1)

Shows strength of monotonic association
(perfect for monotone increasing/decreasing relationship)
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Ranking comparison

The Kendall tau rank distance is a metric that counts the number of
pairwise disagreements between two ranking lists
Kendall rank correlation coefficient, commonly referred to as Kendall’s
tau coefficient

τ =
nc − nd

n(n − 1)/2

nc - number of concordant pairs, nd - number of discordant pairs
−1 ≤ τ ≤ 1, perfect agreement τ = 1, reversed τ = −1

Example

Rank 1 A B C D E
Rank 2 C D A B E

τ =
6− 4

5(5− 1)/2
= 0.2
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