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Graph theory

Graph G (E ,V ), |V | = n, |E | = m
Adjacency matrix An×n, Aij , edge i → j

Graph is directed, matrix is non-symmetric: AT 6= A, Aij 6= Aji
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Graph theory

sinks: zero out degree nodes, kout(i) = 0, absorbing nodes

sources: zero in degree nodes, kin(i) = 0
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Graph theory

Graph is strongly connected if every vertex is reachable form every
other vertex.

Strongly connected components are partitions of the graph into
subgraphs that are strongly connected

In strongly connected graphs there is a path is each direction between
any two pairs of vertices

image from Wikipedia
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Graph theory

A directed graph is aperiodic if the greatest common divisor of the
lengths of its cycles is one (there is no integer k >1 that divides the
length of every cycle of the graph)

image from Wikipedia
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Web search engine

”The Anatomy of a Large-Scale Hypertextual Web Search Engine”

Sergey Brin and Lawrence Page, 1998
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Web as a graph

Hyperlinks - implicit endorsements

Web graph - graph of endorsements (sometimes reciprocal)
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Ranking on directed graph

iteratively update

ri ←
∑

j∈N(i)

rj =
∑
j

Aji rj

r t+1
i =

∑
j

Aji r
t
j , with r t=0

j = r0
j

rt+1 = AT rt , rt=0 = r0

norm ||rt+1|| ≥ ||rt ||
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Ranking on directed graph

Absorbing nodes

Source nodes

Cycles

rt+1 = AT rt , rt=0 = r0
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PageRank

”PageRank can be thought of as a model of user behavior. We assume there is a
”random surfer” who is given a web page at random and keeps clicking on links,
never hitting ”back” but eventually gets bored and starts on another random
page. The probability that the random surfer visits a page is its PageRank.”

PR(A) = (1− d) + d(PR(T1)/C (T1) + ...+ PR(Tn)/C (Tn))

Sergey Brin and Larry Page, 1998
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Random walk

Random walk on a directed graph

pt+1
i =

∑
j∈N(i)

ptj
dout
j

=
∑
j

Aji

dout
j

pj

Dii = diag{dout
i }

pt+1 = (D−1A)Tpt

pt+1 = PTpt

Markov chain with transition probability matrix P = D−1A

lim
t→∞

pt = π
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Perron-Frobenius Theorem

Perron-Frobenius theorem (Fundamental Theorem of Markov Chains)
If matrix is

stochastic (non-negative and rows sum up to one, describes Markov
chain)

irreducible (strongly connected graph)

aperiodic

then
∃ lim
t→∞

p̄t = π̄

and can be found as a left eigenvector

π̄P = π̄, where ||π̄||1 = 1

π̄ - stationary distribution of Markov chain, raw vector
Oscar Perron, 1907, Georg Frobenius,1912.
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PageRank

Transition matrix:

P = D−1A

Stochastic matrix:

P′ = P +
seT

n
PageRank matrix:

P′′ = αP′ + (1− α)
eeT

n

Eigenvalue problem (choose solution with λ = 1):

P′′
T
p = λp

Notations:
e - unit column vector, s - absorbing nodes indicator vector (column)
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PageRank computations

Eigenvalue problem (λ = 1, ||p||1 = pTe = 1):(
αP′ + (1− α)

eeT

n

)T

p = λp

p = αP′Tp + (1− α)
e

n

Power iterations:
p← αP′Tp + (1− α)

e

n

Sparse linear system:

(I− αP′T )p = (1− α)
e

n
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Graph structure of the web

Bow tie structure of the web

Andrei Broder et al, 1999
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Hubs and Authorities (HITS)

Citation networks. Reviews vs original research (authoritative) papers

authorities, contain useful information, ai
hubs, contains links to authorities, hi

Mutual recursion

Good authorities reffered by
good hubs

ai ←
∑
j

Ajihj

Good hubs point to good
authorities

hi ←
∑
j

Aijaj

Jon Kleinberg, 1999
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HITS

System of linear equations

a = αATh

h = βAa

Symmetric eigenvalue problem

(ATA)a = λa

(AAT )h = λh

where eigenvalue λ = (αβ)−1
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HITS

Focused subgraph of WWW

Jon Kleinberg, 1999
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PageRank beyond the Web

from David Gleich
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