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Network communities

Connected and undirected graphs
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Network communities

What makes a community (cohesive subgroup):

Mutuality of ties. Everyone in the group has ties (edges) to one
another

Compactness. Closeness or reachability of group members in small
number of steps, not necessarily adjacency

Density of edges. High frequency of ties within the group

Separation. Higher frequency of ties among group members compared
to non-members

Wasserman and Faust
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Graph cliques

Definition

A clique is a complete (fully connected) subgraph, i.e. a set of vertices
where each pair of vertices is connected.

Cliques can overlap
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Graph cliques

A maximal clique is a clique that cannot be extended by including
one more adjacent vertex (not included in larger one)

A maximum clique is a clique of the largest possible size in a given
graph

Graph clique number is the size of the maximum clique

image from D. Eppstein
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Graph cliques

Computational issues:

Finding click of fixed given size k - O(nkk2)

Finding maximum clique O(3n/3)

But in sparse graphs...
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Relaxation of a clique

k-plex of size n is a maximal subset of n vertices such that each
vertex is connected to at least n − k others in the subset (any vertex
can be lacking ties with no more than k members).

k-core is a maximal subset of vertices such that each is connected to
at least k others in the subset (degree of every vertex in k-core
ki ≥ k) . (k+1) core is always a subgraph of k − core
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K-core

The core number of a vertex is the highest order of a core that
contains this vertex

image from Alvarez-Hamelin et.al., 2005
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Graph cliques

Zachary Karate Club, 1977

Maximal cliques:
Clique size: 2 3 4 5
Number of cliques: 11 21 2 2
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Graph cliques

Zachary karate club 1,2,3,4 - cores

Maximum cliques
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K-cores

Zachary karate club: 1,2,3,4 - cores

4−core
====⇒
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Network communities

Definition

Network communities are groups of vertices similar to each other.

Community detection is an assignment of vertices to communities.
Non-overlapping communities (every vertex belongs to a single group)
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Similarity based clustering

Similarity based vertex clustering:

Define similarity measure between vertices based on network structure
- Jaccard similarity
- Cosine similarity
- Pearson correlation
- Eucledian distance (dissimilarity)

Calculate similarity between all pairs of vertices in the graph
(similarity matrix)

Group together vertices with high similarities
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Hierarchical clustering

Agglomerative clustering:

Assign each vertex to a group of its own
Find two groups with the highest similarity and join them in a single
group
Calculate similarity between groups:
- single-linkage clustering (most similar in the group)
- complete-linkage clustering (least similar in the group)
- average-linkage clustering (mean similarity between groups)
Repeat until all joined into single group
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Similarity matrix

Zachary karate club
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Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering

Leonid E. Zhukov (HSE) Lecture 8 3.03.2015 21 / 30



Network communities

Definition

Network communities are groups of vertices such that vertices inside the
group connected with many more edges than between groups.

Graph partitioning problem
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Graph partitioning

Combinatorial problem:

Number of ways to divide network of n nodes in 2 groups
(bi-partition):

n!

n1!n2!
, n = n1 + n2

Dividing into k non-empty groups (Stirling numbers of the second
kind)

S(n, k) =
1

k!

n∑
j=0

(−1)jC j
k(k − j)n

Number of all possible partitions (n-th Bell number):

Bn =
n∑

k=1

S(n, k)

B20 = 5, 832, 742, 205, 057
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Heuristic approach

Focus on edges that connect communities.
Edge betweenness -number of shortest paths σst(e) going through edge e

CB(e) =
∑
s 6=t

σst(e)

σst

Construct communities by progressively removing edges
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Edge betweenness

Newman-Girvan, 2004

Algorithm: Edge Betweenness

Input: graph G(V,E)

Output: Dendrogram

repeat
For all e ∈ E compute edge betweenness CB(e);

remove edge ei with largest CB(ei ) ;

until edges left;

If bi-partition, then stop when graph splits in two components
(check for connectedness)
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Edge betweenness

Hierarchical algorithm, dendrogram
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Community ”quality”

Let nc - number of classes, ci - class label per node
Compare fraction of edges within the cluster to expected fraction if
edges were distributed at random
Modularity:

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci , cj), δ(ci , cj)- kronecker delta

The higher the modularity score - the better is community
Modularity score range Q ∈ [−1/2, 1)
Single class, δ(ci , cj) = 1, Q = 0
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Dendrogram and modularity score

Newman and Girvan, 2004
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Network communities

Zachary karate club
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