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Lecture outline
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Community detection

image from W. Liu , 2014
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Overlapping communities

Palla, 2005
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Overlapping communities

Palla, 2005
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k-clique community

k-clique is a clique (complete subgraph) with k nodes

k-clique community a union of all k-cliques that can be reached from
each other through a series of adjacent k-cliques

two k-cliques are said to be adjacent if they share k − 1 nodes.

Adjacent 4-cliques
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k-clique percolation

Find all maximal cliques

Create clique overlap matrix

Threshold matrix at value k − 1

Communities = connected components

Palla, 2005
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k-clique percolation

Palla, 2005
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k-clique percolation

k = 4 k = 5

Palla, 2005
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k-clique percolation

Palla, 2005
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Fast community unfolding

Multi-resolution scalable method

2 mln mobile phone network
V. Blondel et.al., 2008
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Fast community unfolding

”The Louvain method”

Heuristic method for greedy modularity optimization

Find partitions with high modularity

Multi-level (multi-resolution) hierarchical scheme

Scalable

Modularity:

Q =
1

2m

∑
i ,j

(
Aij −

kikj
2m

)
δ(ci , cj)

V. Blondel et.al., 2008
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Fast community unfolding

Algorithm

Assign every node to its own community

Phase I

For every node evaluate modularity gain from removing node from its
community and placing it in the community of its neighbor
Place node in the community maximizing modularity gain
repeat until no more improvement (local max of modularity)

Phase II

Nodes from communities merged into ”super nodes”
Weight on the links added up

Repeat until no more changes (max modularity)

V. Blondel et.al., 2008
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Fast community unfolding

V. Blondel et.al., 2008
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Fast community unfolding

V. Blondel et.al., 2008
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Communities and random walks

Random walks on a graph tend to get trapped into densely connected
parts corresponding to communities.
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Walktrap community

Walktrap

Consider random walk on graph

At each time step walk moves to NN uniformly at random Pij =
Aij

d(i) ,

P = D−1A, Dii = diag(d(i))

Pt
ij - probability to get from i to j in t steps, t � tmixing

Assumptions: for two i and j in the same community Pt
ij is high

if i and j are in the same community, then ∀k , Pt
ik ≈ Pt

jk

Distance between nodes:

rij(t) =

√√√√ n∑
k=1

(Pt
ik − Pt

jk)2

d(k)
= ||D−1/2Pt

i − D−1/2Pt
j ||

P. Pons and M. Latapy, 2006
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Walktrap

Computing node distance rij

Direct (exact) computation: Pt
ij = (Pt)ij or Pt

i = Ptp0
i , p0

i (k) = δik

Approximate computation (simulation):
– Compute K random walks of length t starting form node i
– Approximate Pt

ik ≈
Nik
K , number of walks end up on k

Distance between communities:

Pt
Cj =

1

|C |
∑
i∈C

Pt
ij

rC1C2(t) =

√√√√ n∑
k=1

(Pt
C1k
− Pt

C2k
)2

d(k)
= ||D−1/2Pt

C1
− D−1/2Pt

C2
||

P. Pons and M. Latapy, 2006
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Walktrap

Algorithm (hierarchical clustering)

Assign each vertex to its own community S1 = {{v}, v ∈ V }
Compute distance between all adjacent communities rCiCj

Choose two ”closest” communities that minimizes (Ward’s methods):

∆σ(C1,C2) =
1

n

∑
i∈C3

r2
iC3
−
∑
i∈C1

r2
iC1
−
∑
i∈C2

r2
iC2


and merge them Sk+1 = (Sk\{C1,C2}) ∪ C3, C3 = C1 ∪ C2

update distance between communities

After n − 1 steps finish with one community Sn = {V }

P. Pons and M. Latapy, 2006

Leonid E. Zhukov (HSE) Lecture 10 19.03.2016 19 / 26



Walktrap

P. Pons and M. Latapy, 2006
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Real world communities

Best conductance of a vertex set S of size k :

Φ(k) = min
S∈V ,|S |=k

φ(S), φ(S) =
cut(S ,V \S)

min(vol(S), vol(S\V ))

where vol(S) =
∑

i∈S ki - sum of all node degrees in the set

J. Leskovec, K. Lang, 2010
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Community detection algorithms

Fortunato, 2010
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Summary

Lectures 1-10

Network characteristics:
– Power law node degree distribution
– Small diameter
– High clustering coefficient (transitivity)
Network models:
– Random graphs
– Preferential attachement
– Small world
Centrality measures:
– Degree centrality
– Closeness centrality
– Betweenness centrality
Link analysis:
– Page rank
– HITS
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Summary

Lectures 1-10

Structural equivalence
– Vertex equivalence
– Vertex similarity
Assortative mixing
– Assortative and disassortative networks
– Mixing by node degree
– Modularity
Network structures:
– Cliques
– k-cores
Network communities:
– Graph partitioning
– Overlapping communities
– Heuristic methods
– Random walk based methods
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