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Epidemic dynamics models

Mathematical epidimiology

W. O. Kermack and A. G. McKendrick, 1927

Deterministic compartamental model (population classes) {S , I ,T}
S(t) - succeptable, number of individuals not yet infected with the
disease at time t

I (t) - infected, number of individuals who have been infected with the
disease and are capable of spreading the disease.

R(t) - recoverd, number of individuals who have been infected and
then recovered from the disease, can’t be infected again or to
transmit the infection to others.

Fully-mixing model

Closed population (no birth, death, migration)

Models: SI, SIS, SIR, SIRS,..
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SI model

S(t) -susceptible , I (t) - infected

S −→ I

S(t) + I (t) = N

β - infection/contact rate, number of contacts per unit time

Infection equation:

I (t + δt) = I (t) + β
S(t)

N
I (t)δt

dI (t)

dt
= β

S(t)

N
I (t)
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SI model

Fractions: i(t) = I (t)/N, s(t) = S(t)/N

Equations

di(t)

dt
= βs(t)i(t)

ds(t)

dt
= −βs(t)i(t)

s(t) + i(t) = 1

Differential equation, i(t = 0) = i0

di(t)

dt
= β(1− i(t))i(t)

Leonid E. Zhukov (HSE) Lecture 12 07.04.2015 5 / 23



Logistic growth function

Solution:

i(t) =
i0

i0 + (1− i0)e−βt

Limit t →∞

i(t)→ 1

s(t)→ 0

in image i0 = 0.05, β = 0.8
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SIS model

S(t) -susceptable , I (t) - infected,

S −→ I −→ S

S(t) + I (t) = N

β - infection rate (on contact), γ - recovery rate

Infection equations:

ds

dt
= −βsi + γi

di

dt
= βsi − γi

s + i = 1

Differential equation, i(t = 0) = i0

di

dt
= (β − γ − i)i
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SIS model

Solution

i(t) = (1− γ

β
)

C

C + e−(β−γ)t

where

C =
βi0

β − γ − βi0

Limit t →∞

β > γ , i(t)→ (1− γ

β
)

β < γ , i(t) = i0e
(β−γ)t → 0
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Logistic function

β > γ, i(t)→ (1− γ
β )

β < γ, i(t) = i0e
(β−γ)t → 0
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SIR model

S(t) -susceptable , I (t) - infected, R(t) - recovered

S −→ I −→ R

S(t) + I (t) + R(t) = N

β - infection rate, γ - recovery rate

Infection equation:

ds

dt
= −βsi

di

dt
= βsi − γi

dr

dt
= γi

s + i + r = 1
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SIR model

Equation
ds

dt
= −βs dr

dt

1

γ

s = s0e
−β
γ
r

dr

dt
= γ(1− r − s0e

−β
γ
r )

Solution

t =
1

γ

∫ r

0

dr

1− r − s0e
−β
γ
r
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SIR model

β
γ = 4

i0 = 0.1
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SIR model

β
γ = 0.5

i0 = 0.1
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SIR model

Equation
dr

dt
= γ(1− r − s0e

−β
γ
r )

Limits: t →∞, dr
dt = 0, r∞ = const,

1− r∞ = s0e
−β
γ
r∞

Initial conditions: r(0) = 0, i(0) = c/N, s(0) = 1− c/N ≈ 1

1− r∞ = e−
β
γ
r∞
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SIR model

r∞ = 1− e−R0r∞ , R0 =
β

γ

(r∞)′|r∞=0 = (1− e−R0r∞)′|r∞=0,

critical point: R0 = 1

Leonid E. Zhukov (HSE) Lecture 12 07.04.2015 15 / 23



SIR model

r∞ - the total size of the outbreak

Epidemic threshold

Epidemics: R0 > 1, β > γ , r∞ = const > 0

No epidemics: R0 < 1, β < γ , r∞ → 0

β - infection rate, γ - recovery rate → 1/γ - average time to recover

Basic reproduction number

R0 =
β

γ

It is average number of people infected by a person before his recovery

R0 = E [βτ ] = β

∫ ∞
0

γτe−γτdτ =
β

γ

Leonid E. Zhukov (HSE) Lecture 12 07.04.2015 16 / 23



Model of contagion

Simple model of contagion (decease transmission)

1st-wave: first infected person enters the population and transmits to
each person he meets with probability p. Suppose he meets k people
while contagious

2nd-wave: Each infected person from 1st wave meets k new people
and independently transmits infection with probability p

3rd-wave: ....

This is Galton-Watson branching stochastic process (Proposed by Francis
Galton 1889 as a model for extinction of family names)
Population is organized as a tree
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Branching process

image from David Easley, Jon Kleinberg, 2010
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Branching process

Extinction probability

let qn - probability that infection persists n steps (levels of the tree)

pqn−1 - probability that spreads through one first contact and then
survives n − 1 levels

(1− pqn−1)k - probability that will not spread through any of the
subtries

(1− pqn−1)k = 1− qn
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Branching process

Recurrence (qn - probability that infection persists through n steps)

qn = 1− (1− pqn−1)k , q0 = 1
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Branching process

limiting probability q∗ = limn→∞ qn

q∗ = 1− (1− pq∗)k

Slope:
pk(1− pq)k−1

∣∣
q=0

= 1

When R0 = pk > 1, there is a non zero probability of infection persists
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Branching process

Galton-Watson branching random process:

if R0 = 1, the mean of number of infected nodes does not change

if R0 > 1, the mean grows geometrically as Rn
0

if R0 < 1, the mean shrinks geometrically as Rn
0

R0 = 1 - point of phase transition
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