Network models

Empirical network features:
- Power-law (heavy-tailed) degree distribution
- Small average distance (graph diameter)
- Large clustering coefficient (transitivity)
- Giant connected component, hierarchical structure, etc

Generative models:
- Random graph model (Erdos & Renyi, 1959)
- "Small world" model (Watts & Strogatz, 1998)
- Preferential attachment model (Barabasi & Albert, 1999)
Random graph model

Graph $G\{E, V\}$, nodes $n = |V|$, edges $m = |E|$

Erdos and Renyi, 1959.

Random graph models

- $G_{n,m}$, a randomly selected graph from the set of C^m_N graphs, $N = \frac{n(n-1)}{2}$, with n nodes and m edges

- $G_{n,p}$, each pair out of $N = \frac{n(n-1)}{2}$ pairs of nodes is connected with probability p, m - random number

\[
\langle m \rangle = p \frac{n(n-1)}{2}
\]

\[
\langle k \rangle = \frac{1}{n} \sum_i k_i = \frac{2 \langle m \rangle}{n} = p (n - 1) \approx pn
\]

\[
\rho = \frac{\langle m \rangle}{n(n-1)/2} = p
\]
Random graph model

- Probability that i-th node has a degree $k_i = k$

$$P(k_i = k) = P(k) = C_{n-1}^k p^k (1 - p)^{n-1-k}$$

(Bernoulli distribution)
p^k - probability that connects to k nodes (has k-edges)
$(1 - p)^{n-k-1}$ - probability that does not connect to any other node
C_{n-1}^k - number of ways to select k nodes out of all to connect to

- Limiting case of Bernoulli distribution, when $n \to \infty$ at fixed

$$\langle k \rangle = pn = \lambda$$

$$P(k) = \frac{\langle k \rangle^k e^{-\langle k \rangle}}{k!} = \frac{\lambda^k e^{-\lambda}}{k!}$$

(Poisson distribution)
Poisson Distribution

\[P(k_i = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad \lambda = pn \]
Consider $G_{n,p}$ as a function of p

- $p = 0$, empty graph
- $p = 1$, complete (full) graph
- There are exist critical p_c, structural changes from $p < p_c$ to $p > p_c$
- Gigantic connected component appears at $p > p_c$
Random graph model

\[p < p_c \quad p = p_c \quad p > p_c \]
Random graph model

\[p \gg p_c \]
Phase transition

Let u - fraction of nodes that do not belong to GCC. The probability that a node does not belong to GCC

$$u = P(k = 0) + P(k = 1) \cdot u + P(k = 2) \cdot u^2 + P(k = 3) \cdot u^3 \ldots =$$

$$= \sum_{k=0}^{\infty} P(k) u^k = \sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} u^k = e^{-\lambda} e^{\lambda u} = e^{\lambda(u-1)}$$

Let s - fraction of nodes belonging to GCC (size of GCC)

$$s = 1 - u$$

$$1 - s = e^{-\lambda s}$$

when $\lambda \to \infty$, $s \to 1$

when $\lambda \to 0$, $s \to 0$

($\lambda = pn$)
Phase transition

\[s = 1 - e^{-\lambda s} \]

non-zero solution exists when (at \(s = 0 \)):

\[\lambda e^{-\lambda s} > 1 \]

critical value:

\[\lambda_c = 1 \]

\[\lambda_c = \langle k \rangle = p_c n = 1, \quad p_c = \frac{1}{n} \]
Numerical simulations

\[\langle k \rangle = pn \]
Phase transition

Graph $G(n, p)$, for $n \to \infty$, critical value $p_c = 1/n$

- when $p < p_c$, $\langle k \rangle < 1$ there is no components with more than $O(\ln n)$ nodes, largest component is a tree
- when $p = p_c$, $\langle k \rangle = 1$ the largest component has $O(n^{2/3})$ nodes
- when $p > p_c$, $\langle k \rangle > 1$ gigantic component has all $O(n)$ nodes

Critical value: $\langle k \rangle = p_c n = 1$ - on average one neighbor for a node
Phase transition

<table>
<thead>
<tr>
<th>n</th>
<th>c = 0.5</th>
<th>c = 1.0</th>
<th>c = 2.0</th>
<th>c = 4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clauset, 2014
Threshold probabilities

Graph $G(n, p)$
Threshold probabilities when different subgraphs of k-nodes and l-edges appear in a random graph $p_c \sim n^{-k/l}$

When $p > p_c$:
- $p_c \sim n^{-k/(k-1)}$, having a tree with k nodes
- $p_c \sim n^{-1}$, having a cycle with k nodes
- $p_c \sim n^{-2/(k-1)}$, complete subgraph with k nodes

Barabasi, 2002
Clustering coefficient (probability that two neighbors link to each other):

\[C_i(k) = \frac{\text{# of links between NN}}{\text{# max number of links NN}} = \frac{pk(k - 1)/2}{k(k - 1)/2} = p \]

\[C = p = \frac{\langle k \rangle}{n} \]

- when \(n \to \infty \), \(C \to 0 \)
Graph diameter

- $G(n, p)$ is locally tree-like (GCC) (no loops; low clustering coefficient)

- On average, the number of nodes d steps away from a node

\[
n = 1 + \langle k \rangle + \langle k \rangle^2 + \ldots \langle k \rangle^D = \frac{\langle k \rangle^{D+1} - 1}{\langle k \rangle - 1} \approx \langle k \rangle^D
\]

- In GCC, around p_c, $\langle k \rangle^D \sim n$,

\[
D \sim \frac{\ln n}{\ln \langle k \rangle}
\]
Random graph

$G(n, p)$ model:

- Node degree distribution - Poisson:

 $$P(k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad \lambda = pn$$

- Clustering coefficient - small:

 $$C = p$$

- Graph diameter - small:

 $$D \sim \ln n$$
Random graph with n nodes with a given degree sequence: $D = \{k_1, k_2, k_3, \ldots, k_n\}$ and $m = \frac{1}{2} \sum_i k_i$ edges.

Construct by randomly matching two stubs and connecting them by an edge.

Can contain self loops and multiple edges

Probability that two nodes i and j are connected

$$p_{ij} = \frac{k_i k_j}{2m - 1}$$

Will be a simple graph for special "graphical degree sequence"
Configuration model

Can be used as a "null model" for comparative network analysis

Clauset, 2014
References