Network models: random graphs

Leonid E. Zhukov

School of Data Analysis and Artificial Intelligence
Department of Computer Science
National Research University Higher School of Economics

Network Science

NATIONAL RESEARCH
UNIVERSITY

Network models

Empirical network features:

- Power-law (heavy-tailed) degree distribution
- Small average distance (graph diameter)
- Large clustering coefficient (transitivity)
- Giant connected component, hierarchical structure,etc

Generative models:

- Random graph model (Erdos \& Renyi, 1959)
- "Small world" model (Watts \& Strogatz, 1998)
- Preferential attachement model (Barabasi \& Albert, 1999)

Random graph model

Graph $G\{E, V\}$, nodes $n=|V|$, edges $m=|E|$
Erdos and Renyi, 1959.
Random graph models

- $G_{n, m}$, a randomly selected graph from the set of C_{N}^{m} graphs, $N=\frac{n(n-1)}{2}$, with n nodes and m edges
- $G_{n, p}$, each pair out of $N=\frac{n(n-1)}{2}$ pairs of nodes is connected with probability p, m - random number

$$
\begin{gathered}
\langle m\rangle=p \frac{n(n-1)}{2} \\
\langle k\rangle=\frac{1}{n} \sum_{i} k_{i}=\frac{2\langle m\rangle}{n}=p(n-1) \approx p n \\
\rho=\frac{\langle m\rangle}{n(n-1) / 2}=p
\end{gathered}
$$

Random graph model

- Probability that i-th node has a degree $k_{i}=k$

$$
P\left(k_{i}=k\right)=P(k)=C_{n-1}^{k} p^{k}(1-p)^{n-1-k}
$$

(Bernoulli distribution)
p^{k} - probability that connects to k nodes (has k-edges)
$(1-p)^{n-k-1}$ - probability that does not connect to any other node
C_{n-1}^{k} - number of ways to select k nodes out of all to connect to

- Limiting case of Bernoulli distribution, when $n \rightarrow \infty$ at fixed $\langle k\rangle=p n=\lambda$

$$
P(k)=\frac{\langle k\rangle^{k} e^{-\langle k\rangle}}{k!}=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

(Poisson distribution)

Poisson Distribution

Phase transition

Consider $G_{n, p}$ as a function of p

- $p=0$, empty graph
- $p=1$, complete (full) graph
- There are exist critical p_{c}, structural changes from $p<p_{c}$ to $p>p_{c}$
- Gigantic connected component appears at $p>p_{c}$

Random graph model

$p<p_{c}$

$p=p_{c}$

$p>p_{c}$

Random graph model

$$
p \gg p_{c}
$$

Phase transition

Let u fraction of nodes that do not belong to GCC. The probability that a node does not belong to GCC

$$
\begin{array}{r}
u=P(k=0)+P(k=1) \cdot u+P(k=2) \cdot u^{2}+P(k=3) \cdot u^{3} \ldots= \\
=\sum_{k=0}^{\infty} P(k) u^{k}=\sum_{k=0} \frac{\lambda^{k} e^{-\lambda}}{k!} u^{k}=e^{-\lambda} e^{\lambda u}=e^{\lambda(u-1)}
\end{array}
$$

Let s-fraction of nodes belonging to GCC (size of GCC)

$$
\begin{gathered}
s=1-u \\
1-s=e^{-\lambda s}
\end{gathered}
$$

when $\lambda \rightarrow \infty, \quad s \rightarrow 1$ when $\lambda \rightarrow 0, s \rightarrow 0$ ($\lambda=p n$)

Phase transition

$$
s=1-e^{-\lambda s}
$$

non-zero solution exists when (at $s=0$):

$$
\lambda e^{-\lambda s}>1
$$

critical value:

$$
\begin{gathered}
\lambda_{c}=1 \\
\lambda_{c}=\langle k\rangle=p_{c} n=1, \quad p_{c}=\frac{1}{n}
\end{gathered}
$$

Numerical simulations

$$
\langle k\rangle=p n
$$

Phase transition

Graph $G(n, p)$, for $n \rightarrow \infty$, critical value $p_{c}=1 / n$

- when $p<p_{c},(\langle k\rangle<1)$ there is no components with more than $O(\ln n)$ nodes, largest component is a tree
- when $p=p_{c},(\langle k\rangle=1)$ the largest component has $O\left(n^{2 / 3}\right)$ nodes
- when $p>p_{c},(\langle k\rangle>1)$ gigantic component has all $O(n)$ nodes

Critical value: $\langle k\rangle=p_{c} n=1$ - on average one neighbor for a node

Phase transition

Threshold probabilities

Graph $G(n, p)$
Threshold probabilities when different subgraphs of k-nodes and l-edges appear in a random graph $p_{c} \sim n^{-k / l}$

When $p>p_{c}$:

- $p_{c} \sim n^{-k /(k-1)}$, having a tree with k nodes
- $p_{c} \sim n^{-1}$, having a cycle with k nodes
- $p_{c} \sim n^{-2 /(k-1)}$, complete subgraph with k nodes

Clustering coefficient

- Clustering coefficient (probability that two neighbors link to each other):

$$
\begin{gathered}
C_{i}(k)=\frac{\text { \#of links between NN }}{\# \text { max number of links NN }}=\frac{p k(k-1) / 2}{k(k-1) / 2}=p \\
C=p=\frac{\langle k\rangle}{n}
\end{gathered}
$$

- when $n \rightarrow \infty, \quad C \rightarrow 0$

Graph diameter

- $G(n, p)$ is locally tree-like (GCC) (no loops; low clustering coefficient)

- on average, the number of nodes d steps away from a node

$$
n=1+\langle k\rangle+\langle k\rangle^{2}+\ldots\langle k\rangle^{D}=\frac{\langle k\rangle^{D+1}-1}{\langle k\rangle-1} \approx\langle k\rangle^{D}
$$

- in GCC, around $p_{c},\langle k\rangle^{D} \sim n$,

$$
D \sim \frac{\ln n}{\ln \langle k\rangle}
$$

Random graph

$G(n, p)$ model:

- Node degree distribution - Poisson:

$$
P(k)=\frac{\lambda^{k} e^{-\lambda}}{k!}, \quad \lambda=p n
$$

- Clustering coefficient - small:

$$
C=p
$$

- Graph diameter - small:

$$
D \sim \ln n
$$

Configuration model

- Random graph with n nodes with a given degree sequence:

$$
D=\left\{k_{1}, k_{2}, k_{3} . . k_{n}\right\} \text { and } m=1 / 2 \sum_{i} k_{i} \text { edges. }
$$

- Construct by randomly matching two stubs and connecting them by an edge.

- Can contain self loops and multiple edges
- Probability that two nodes i and j are connected

$$
p_{i j}=\frac{k_{i} k_{j}}{2 m-1}
$$

- Will be a simple graph for special "graphical degree sequence"

Configuration model

Can be used as a "null model" for comparative network analysis

karate club

configuration model

References

- On random graphs I, P. Erdos and A. Renyi, Publicationes Mathematicae 6, 290297 (1959).
- On the evolution of random graphs, P. Erdos and A. Renyi, Publicaton of the Mathematical Institute of the Hungarian Academy of Sciences, 17-61 (1960)

