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Network models

Empirical network features:

Power-law (heavy-tailed) degree distribution

Small average distance (graph diameter)

Large clustering coefficient (transitivity)

Giant connected component, hierarchical structure,etc

Generative models:

Random graph model (Erdos & Renyi, 1959)

”Small world” model (Watts & Strogatz, 1998)

Preferential attachement model (Barabasi & Albert, 1999)
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Random graph model

Graph G{E ,V }, nodes n = |V |, edges m = |E |
Erdos and Renyi, 1959.
Random graph models

Gn,m, a randomly selected graph from the set of

Cm
N graphs,N = n(n−1)

2 , with n nodes and m edges

Gn,p, each pair out of N = n(n−1)
2 pairs of nodes is connected with

probability p, m - random number

〈m〉 = p
n(n − 1)

2

〈k〉 =
1

n

∑
i

ki =
2〈m〉
n

= p (n − 1) ≈ pn

ρ =
〈m〉

n(n − 1)/2
= p
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Random graph model

Probability that i-th node has a degree ki = k

P(ki = k) = P(k) = C k
n−1p

k(1− p)n−1−k

(Bernoulli distribution)
pk - probability that connects to k nodes (has k-edges)
(1− p)n−k−1 - probability that does not connect to any other node
C k
n−1 - number of ways to select k nodes out of all to connect to

Limiting case of Bernoulli distribution, when n→∞ at fixed
〈k〉 = pn = λ

P(k) =
〈k〉ke−〈k〉

k!
=
λke−λ

k!

(Poisson distribution)
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Poisson Distribution

P(ki = k) =
λke−λ

k!
, λ = pn
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Phase transition

Consider Gn,p as a function of p

p = 0, empty graph

p = 1, complete (full) graph

There are exist critical pc , structural changes from p < pc to p > pc

Gigantic connected component appears at p > pc
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Random graph model

p < pc p = pc p > pc
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Random graph model

p >> pc
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Phase transition

Let u fraction of nodes that do not belong to GCC. The probability that a
node does not belong to GCC

u = P(k = 0) + P(k = 1) · u + P(k = 2) · u2 + P(k = 3) · u3... =

=
∞∑
k=0

P(k)uk =
∑
k=0

λke−λ

k!
uk = e−λeλu = eλ(u−1)

Let s -fraction of nodes belonging to GCC (size of GCC)

s = 1− u

1− s = e−λs

when λ→∞, s → 1
when λ→ 0, s → 0
(λ = pn)
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Phase transition

s = 1− e−λs

non-zero solution exists when (at s = 0):

λe−λs > 1

critical value:
λc = 1

λc = 〈k〉 = pcn = 1, pc =
1

n
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Numerical simulations

〈k〉 = pn
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Phase transition

Graph G (n, p), for n→∞, critical value pc = 1/n

when p < pc , (〈k〉 < 1) there is no components with more than
O(ln n) nodes, largest component is a tree

when p = pc , (〈k〉 = 1) the largest component has O(n2/3) nodes

when p > pc , (〈k〉 > 1) gigantic component has all O(n) nodes

Critical value: 〈k〉 = pcn = 1- on average one neighbor for a node
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Phase transition

Clauset, 2014
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Threshold probabilities

Graph G (n, p)
Threshold probabilities when different subgraphs of k-nodes and l-edges
appear in a random graph pc ∼ n−k/l

When p > pc :

pc ∼ n−k/(k−1), having a tree with k nodes

pc ∼ n−1, having a cycle with k nodes

pc ∼ n−2/(k−1), complete subgraph with k nodes

Barabasi, 2002
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Clustering coefficient

Clustering coefficient (probability that two neighbors link to each
other):

Ci (k) =
#of links between NN

#max number of links NN
=

pk(k − 1)/2

k(k − 1)/2
= p

C = p =
〈k〉
n

when n→∞, C → 0
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Graph diameter

G (n, p) is locally tree-like (GCC) (no loops; low clustering coefficient)

on average, the number of nodes d steps away from a node

n = 1 + 〈k〉+ 〈k〉2 + ...〈k〉D =
〈k〉D+1 − 1

〈k〉 − 1
≈ 〈k〉D

in GCC, around pc , 〈k〉D ∼ n,

D ∼ ln n

ln〈k〉
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Random graph

G (n, p) model:

Node degree distribution - Poisson:

P(k) =
λke−λ

k!
, λ = pn

Clustering coefficient - small:

C = p

Graph diameter - small:
D ∼ ln n
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Configuration model

Random graph with n nodes with a given degree sequence:
D = {k1, k2, k3..kn} and m = 1/2

∑
i ki edges.

Construct by randomly matching two stubs and connecting them by
an edge.

Can contain self loops and multiple edges

Probability that two nodes i and j are connected

pij =
kikj

2m − 1

Will be a simple graph for special ”graphical degree sequence”
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Configuration model

Can be used as a ”null model” for comparative network analysis

Clauset, 2014
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