Network models

Empirical network features:
- Power-law (heavy-tailed) degree distribution
- Small average distance (graph diameter)
- Large clustering coefficient (transitivity)
- Giant connected component, hierarchical structure, etc

Generative models:
- Random graph model (Erdos & Renyi, 1959)
- Preferential attachment model (Barabasi & Albert, 1999)
- Small world model (Watts & Strogatz, 1998)
Most of the networks we study are evolving over time, they expand by adding new nodes:

- Citation networks
- Collaboration networks
- Web
- Social networks
Preferential attachment model

Barabasi and Albert, 1999
Dynamic growth model
Start at \(t = 0 \) with \(n_0 \) nodes and some edges \(m_0 \geq n_0 \)

1. **Growth**
 At each time step add a new node with \(m \) edges \((m \leq n_0) \), connecting to \(m \) nodes already in network \(k_i(i) = m \)

2. **Preferential attachment**
 The probability of linking to existing node \(i \) is proportional to the node degree \(k_i \)
 \[
 \Pi(k_i) = \frac{k_i}{\sum_i k_i}
 \]

after \(t \) timesteps: \(t + n_0 \) nodes, \(mt + m_0 \) edges
Preferential attachment model

Scale-Free Model

Barabasi, 1999
Preferential attachment

Continues approximation: continues time, real variable node degree
\(\langle k_i(t) \rangle \) - expected value over multiple realizations

Time-dependent degree of a single node:

\[
k_i(t + \delta t) = k_i(t) + m \Pi(k_i) \delta t
\]

Initial conditions:

\[k_i(t = i) = m \]

Solution:

\[k_i(t) = m \left(\frac{t}{i} \right)^{1/2} \]
Node degree k as function of time t

$$k_i(t) = m \left(\frac{t}{i} \right)^{1/2}$$
Preferential attachment
Preferential attachment

Time evolution of a node degree

\[k_i(t) = m \left(\frac{t}{i} \right)^{1/2} \]

Nodes with \(k_i(t) \leq k \):

\[m \left(\frac{t}{i} \right)^{1/2} \leq k \]
\[i \geq \frac{m^2}{k^2} t \]

Probability of randomly selected node to have \(k' \leq k \) (fraction of nodes with \(k' \leq k \))

\[F(k) = P(k' \leq k) = \frac{n_0 + t - m^2 t/k^2}{n_0 + t} \approx 1 - \frac{m^2}{k^2} \]

Distribution function:

\[P(k) = \frac{d}{dk} F(k) = \frac{2m^2}{k^3} \]
Preferential attachment vs random graph

BA: \(P(k) = \frac{2m^2}{k^3} \), \quad ER: \ P(k) = \frac{\langle k \rangle^k e^{-\langle k \rangle}}{k!}, \quad \langle k \rangle = pn
Preferential attachment vs random graph

Node degree distribution

BA: \(P(k) = \frac{2m^2}{k^3} \),

ER: \(P(k) = \frac{\langle k \rangle^k e^{-\langle k \rangle}}{k!} \), \(\langle k \rangle = pn \)
Preferential attachment vs random graph
Preferential attachment model

\[m = 1 \quad m = 2 \quad m = 3 \]
Growing random graph

1. **Growth**

 At each time step add a new node with m edges ($m \leq n_0$), connecting to m nodes already in network $k_i(i) = m$

2. **Preferential attachment Uniformly at random**

 The probability of linking to existing node i is

 $$\Pi(k_i) = \frac{1}{n_0 + t - 1}$$

 Node degree growth:

 $$k_i(t) = m \left(1 + \log \left(\frac{t}{i}\right)\right)$$

 Node degree distribution function:

 $$P(k) = \frac{e}{m} \exp \left(-\frac{k}{m}\right)$$
Preferential attachment

- Power law distribution function:
 \[P(k) = \frac{2m^2}{k^3} \]

- Average path length (analytical result):
 \[\langle L \rangle \sim \frac{\log(N)}{\log(\log(N))} \]

- Clustering coefficient (numerical result):
 \[C \sim N^{-0.75} \]
Many more models

Some other models that produce scale-free networks:

- Non-linear preferential attachment
- Link selection model
- Copying model
- Cost-optimization model
- ...

Leonid E. Zhukov (HSE)
Historical note

- Polya urn model, George Polya, 1923
- Yule process, Udny Yule, 1925
- Distribution of wealth, Herbert Simon, 1955
- Evolution of citation networks, cumulative advantage, Derek de Solla Price, 1976
- Preferential attachment network model, Barabasi and Albert, 1999
Motivation: keep high clustering, get small diameter

Clustering coefficient $C = 1/2$
Graph diameter $d = 8$
Watts and Strogatz, 1998

Single parameter model, interpolation between regular lattice and random graph

- start with regular lattice with \(n \) nodes, \(k \) edges per vertex (node degree), \(k << n \)
- randomly connect with other nodes with probability \(p \), forms \(p nk/2 \) "long distance" connections from total of \(nk/2 \) edges
- \(p = 0 \) regular lattice, \(p = 1 \) random graph
Small world

Watts, 1998
Small world model

- Node degree distribution: Poisson like
- Ave. path length $\langle L(p) \rangle$:
 - $p \to 0$, ring lattice, $\langle L(0) \rangle = 2n/k$
 - $p \to 1$, random graph, $\langle L(1) \rangle = \log(n)/\log(k)$
- Clustering coefficient $C(p)$:
 - $p \to 0$, ring lattice, $C(0) = 3/4 = \text{const}$
 - $p \to 1$, random graph, $C(1) = k/n$

Watts, 1998
Small world model

20% rewiring:
ave. path length = 3.58 → ave. path length = 2.32
clust. coeff = 0.49 → clust. coeff = 0.19
Model comparison

<table>
<thead>
<tr>
<th></th>
<th>Random</th>
<th>BA model</th>
<th>WS model</th>
<th>Empirical networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(k)</td>
<td>$\frac{\lambda^k e^{-\lambda}}{k!}$</td>
<td>k^{-3}</td>
<td>poisson like</td>
<td>power law</td>
</tr>
<tr>
<td></td>
<td>$\langle k \rangle / N$</td>
<td>$N^{-0.75}$</td>
<td>const</td>
<td>large</td>
</tr>
<tr>
<td></td>
<td>$\log(N)$</td>
<td>$\log(N)$</td>
<td>$\log(N)$</td>
<td>small</td>
</tr>
<tr>
<td></td>
<td>$\log(\langle k \rangle)$</td>
<td>$\log \log(N)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\langle L \rangle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Leonid E. Zhukov (HSE)
Lecture 4
06.02.2016
23 / 23