Centrality Measures

Leonid E. Zhukov

School of Data Analysis and Artificial Intelligence
Department of Computer Science
National Research University Higher School of Economics

Network Science

NATIONAL RESEARCH
UNIVERSITY

Lecture outline

(1) Notion of centrality
(2) Graph-theoretic measures
(3) Node centralities

- Degree centrality
- Closeness centrlity
- Betweenness centrality
- Eigenvector centrality
- Katz and Bonacich centralities
(4) Rank correlation

Cetrality

Which vertices are important?

Graph-theoretic measures

- The eccentricity $\epsilon(v)$ of a vertex v is the maximum distance between v and any other vertex u of the graph $\epsilon(v)=\max _{u \in V} d(u, v)$
- Graph diameter is the maximum eccentricity $d=\max _{v \in V} \epsilon(v)$
- Graph radius is the minimum eccentricity $r=\min _{v \in V} \epsilon(v)$.
- A point v is a central point of a graph if the eccentricity of the point equals the graph radius $\epsilon(v)=r$
graph eccentricities

Graph-theoretic measures

- Graph center is a set of of vertices with graph eccentricity equal to the graph radius $\epsilon(v)=r$ - set of central points
- Graph periphery is a set of vertices that have graph eccentricities equal to the graph diameter $\epsilon(v)=d$

Centrality Measures

Sociology: determine the most "important" or "prominent" actors in the network based on actor location, involvement with other actors

Marriage alliances among leading Florentine families 15th century.

Three graphs

Star graph
Circle graph
Line Graph

Degree centrality

Degree centrality: number of nearest neighbours

$$
C_{D}(i)=k(i)=\sum_{j} A_{i j}=\sum_{j} A_{j i}
$$

Normalized degree centrality

$$
C_{D}^{*}(i)=\frac{1}{n-1} C_{D}(i)=\frac{k(i)}{n-1}
$$

High centrality degree -direct contact with many other actors

Closeness centrality

Closeness centrality: how close an actor to all the other actors in network

$$
C_{C}(i)=\frac{1}{\sum_{j} d(i, j)}
$$

Normalized closeness centrality

$$
C_{C}^{*}(i)=(n-1) C_{C}(i)=\frac{n-1}{\sum_{j} d(i, j)}
$$

High closeness centrality - short communication path to others, minimal number of steps to reach others

[*** Harmonic centrality $C_{H}(i)=\sum_{j} \frac{1}{d(i, j)}^{* * *}$]
Alex Bavelas, 1948

Betweenness centrality

Betweenness centrality: number of shortest paths going through the actor $\sigma_{s t}(i)$

$$
C_{B}(i)=\sum_{s \neq t \neq i} \frac{\sigma_{s t}(i)}{\sigma_{s t}}
$$

Normalized betweenness centrality

$$
C_{B}^{*}(i)=\frac{2}{(n-1)(n-2)} C_{B}(i)=\frac{2}{(n-1)(n-2)} \sum_{s \neq t \neq i} \frac{\sigma_{s t}(i)}{\sigma_{s t}}
$$

High betweenness centrality - vertex lies on many shortest paths
Probability that a communication from s to t will go through i (geodesics) Linton Freeman, 1977

Eigenvector centrality

Importance of a node depends on the importance of its neighbors (recursive definition)

$$
\begin{aligned}
v_{i} & \leftarrow \sum_{j} A_{i j} v_{j} \\
v_{i}= & \frac{1}{\lambda} \sum_{j} A_{i j} v_{j} \\
& \mathbf{A} \mathbf{v}=\lambda \mathbf{v}
\end{aligned}
$$

Select an eigenvector associated with largest eigenvalue $\lambda=\lambda_{1}, \mathbf{v}=\mathbf{v}_{1}$

Centrality examples

Closeness centrality

Centrality examples

Betweenness centrality

Centrality examples

Eigenvector centrality

Katz status index

Weighted count of all paths coming to the node: the weight of path of length n is counted with attenuation factor $\beta^{n}, \beta<\frac{1}{\lambda_{1}}$

$$
\begin{gathered}
k_{i}=\beta \sum_{j} A_{i j}+\beta^{2} \sum_{j} A_{i j}^{2}+\beta^{3} \sum_{j} A_{i j}^{3}+\ldots \\
\mathbf{k}=\left(\beta \mathbf{A}+\beta^{2} \mathbf{A}^{2}+\beta^{3} \mathbf{A}^{3}+\ldots\right) \mathbf{e}=\sum_{n=1}^{\infty}\left(\beta^{n} \mathbf{A}^{n}\right) \mathbf{e}=\left(\sum_{n=0}^{\infty}(\beta \mathbf{A})^{n}-\mathbf{I}\right) \mathbf{e} \\
\sum_{n=0}^{\infty}(\beta \mathbf{A})^{n}=(\mathbf{I}-\beta \mathbf{A})^{-1} \\
\mathbf{k}=\left((\mathbf{I}-\beta \mathbf{A})^{-1}-\mathbf{I}\right) \mathbf{e} \\
(\mathbf{I}-\beta \mathbf{A}) \mathbf{k}=\beta \mathbf{A} \mathbf{e} \\
\mathbf{k}=\beta \mathbf{A} \mathbf{k}+\beta \mathbf{A} \mathbf{e} \\
\mathbf{k}=\beta(\mathbf{I}-\beta \mathbf{A})^{-1} \mathbf{A} \mathbf{e}
\end{gathered}
$$

Bonacich centrality

Two-parametric centrality measure $c(\alpha, \beta)$
β - radius of power, α - normalization parameter,
$\beta>0$ - tied to more central (powerful) people
$\beta<0$ - tied to less central (powerful) people
$\beta=0$ - degree centrality

$$
\begin{gathered}
c_{i}(\alpha, \beta)=\sum_{j}\left(\alpha+\beta c_{j}\right) A_{i j} \\
\mathbf{c}=\alpha \mathbf{A} \mathbf{e}+\beta \mathbf{A} \mathbf{c}
\end{gathered}
$$

$$
(\mathbf{I}-\beta \mathbf{A}) \mathbf{c}=\alpha \mathbf{A} \mathbf{e}
$$

$$
\mathbf{c}=\alpha(\mathbf{I}-\beta \mathbf{A})^{-1} \mathbf{A} \mathbf{e}
$$

Normalizaton: $\|\mathbf{c}\|_{2}=\sum c_{i}^{2}=1$

Centrality examples

- A) Betweenness centrality
- B) Closeness centrality
- C) Eigenvector centrality
- D) Degree centrality
- F) Harmonic centrality
- E) Katz centrality

Centralization

Centralization (network measure) - how central the most central node in the network in relation to all other nodes.

$$
C_{x}=\frac{\sum_{i}^{N}\left[C_{x}\left(p_{*}\right)-C_{x}\left(p_{i}\right)\right]}{\max \sum_{i}^{N}\left[C_{x}\left(p_{*}\right)-C_{x}\left(p_{i}\right)\right]}
$$

C_{x} - one of the centrality measures
p_{*} - node with the largest centrality value max - is taken over all graphs with the same number of nodes (for degree, closeness and betweenness the most centralized structure is the star graph)

Linton Freeman, 1979

Metrics comparison

- Pearson correlation coefficient

$$
r=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}
$$

Shows linear dependence between variables, $-1 \leq r \leq 1$ (perfect when related by linear function)

- Spearman rank correlation coefficient (Sperman's rho):

Convert raw scores to ranks - sort by score: $X_{i} \rightarrow x_{i}, Y_{i} \rightarrow y_{i}$

$$
\rho=1-\frac{6 \sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}{n\left(n^{2}-1\right)}
$$

Shows strength of monotonic association (perfect for monotone increasing/decreasing relationship)

Ranking comparison

- The Kendall tau rank distance is a metric that counts the number of pairwise disagreements between two ranking lists
- Kendall rank correlation coefficient, commonly referred to as Kendall's tau coefficient

$$
\tau=\frac{n_{c}-n_{d}}{n(n-1) / 2}
$$

n_{c} - number of concordant pairs, n_{d} - number of discordant pairs

- $-1 \leq \tau \leq 1$, perfect agreement $\tau=1$, reversed $\tau=-1$
- Example
Rank 1 A B C D E

Rank 2 C D A B E

$$
\tau=\frac{6-4}{5(5-1) / 2}=0.2
$$

Florentines families

Marriage Network

References

- Centrality in Social Networks. Conceptual Clarification, Linton C. Freeman, Social Networks, 1, 215-239, 1979
- Power and Centrality: A Family of Measures, Phillip Bonacich, The American Journal of Sociology, Vol. 92, No. 5, 1170-1182, 1987
- A new status index derived from sociometric analysis, L. Katz, Psychometrika, 19, 39-43, 1953.
- Eigenvector-like measures of centrality for asymmetric relations, Phillip Bonacich, Paulette Lloyd, Social Networks 23, 191-201, 2001

