Centrality Measures

Leonid E. Zhukov

School of Data Analysis and Artificial Intelligence
Department of Computer Science
National Research University Higher School of Economics

Network Science
Lecture outline

1. Notion of centrality

2. Graph-theoretic measures

3. Node centralities
 - Degree centrality
 - Closeness centrality
 - Betweenness centrality
 - Eigenvector centrality
 - Katz and Bonacich centralities

4. Rank correlation
Cetrality

Which vertices are important?

M. Grandjean, 2014
The **eccentricity** $\epsilon(v)$ of a vertex v is the maximum distance between v and any other vertex u of the graph $\epsilon(v) = \max_{u \in V} d(u, v)$.

Graph **diameter** is the maximum eccentricity $d = \max_{v \in V} \epsilon(v)$.

Graph **radius** is the minimum eccentricity $r = \min_{v \in V} \epsilon(v)$.

A point v is a **central point** of a graph if the eccentricity of the point equals the graph radius $\epsilon(v) = r$.

Graph eccentricities

![Graph example](image)

From Eric Weisstein *MathWorld*
Graph-theoretic measures

- Graph **center** is a set of vertices with graph eccentricity equal to the graph radius $\epsilon(v) = r$ - set of central points
- Graph **periphery** is a set of vertices that have graph eccentricities equal to the graph diameter $\epsilon(v) = d$
Centrality Measures

Sociology: determine the most ”important” or ”prominent” actors in the network based on actor location, involvement with other actors.

Marriage alliances among leading Florentine families 15th century. Padgett, 1993
Three graphs

Star graph

Circle graph

Line Graph
Degree centrality

Degree centrality: number of nearest neighbours

\[C_D(i) = k(i) = \sum_j A_{ij} = \sum_j A_{ji} \]

Normalized degree centrality

\[C_D^*(i) = \frac{1}{n-1} C_D(i) = \frac{k(i)}{n-1} \]

High centrality degree - direct contact with many other actors
Closeness centrality

Closeness centrality: how close an actor to all the other actors in network

\[C_C(i) = \frac{1}{\sum_j d(i,j)} \]

Normalized closeness centrality

\[C_C^*(i) = (n - 1)C_C(i) = \frac{n - 1}{\sum_j d(i,j)} \]

High closeness centrality - short communication path to others, minimal number of steps to reach others

[*** Harmonic centrality \(C_H(i) = \sum_j \frac{1}{d(i,j)} \) ***]

Alex Bavelas, 1948
Betweenness centrality

Betweenness centrality: number of shortest paths going through the actor $\sigma_{st}(i)$

$$C_B(i) = \sum_{s \neq t \neq i} \frac{\sigma_{st}(i)}{\sigma_{st}}$$

Normalized betweenness centrality

$$C^*_B(i) = \frac{2}{(n - 1)(n - 2)} C_B(i) = \frac{2}{(n - 1)(n - 2)} \sum_{s \neq t \neq i} \frac{\sigma_{st}(i)}{\sigma_{st}}$$

High betweenness centrality - vertex lies on many shortest paths

Probability that a communication from s to t will go through i (geodesics)

Linton Freeman, 1977
Eigenvector centrality

Importance of a node depends on the importance of its neighbors (recursive definition)

\[v_i \leftarrow \sum_j A_{ij} v_j \]

\[v_i = \frac{1}{\lambda} \sum_j A_{ij} v_j \]

\[Av = \lambda v \]

Select an eigenvector associated with largest eigenvalue \(\lambda = \lambda_1 \), \(v = v_1 \)

Phillip Bonacich, 1972.
Centrality examples

Closeness centrality

from www.activenetworks.net
Centrality examples

Betweenness centrality

from www.activenetworks.net
Centrality examples

Eigenvector centrality

from www.activenetworks.net
Katz status index

Weighted count of all paths coming to the node: the weight of path of length n is counted with attenuation factor β^n, $\beta < \frac{1}{\lambda_1}$

$$k_i = \beta \sum_j A_{ij} + \beta^2 \sum_j A_{ij}^2 + \beta^3 \sum_j A_{ij}^3 + ...$$

$$k = (\beta A + \beta^2 A^2 + \beta^3 A^3 + ...)e = \sum_{n=1}^{\infty} (\beta^n A^n)e = (\sum_{n=0}^{\infty} (\beta A)^n - I)e$$

$$\sum_{n=0}^{\infty} (\beta A)^n = (I - \beta A)^{-1}$$

$$k = (((I - \beta A)^{-1} - I)e$$

$$(I - \beta A)k = \beta Ae$$

$$k = \beta Ak + \beta Ae$$

$$k = \beta (I - \beta A)^{-1} Ae$$

Leo Katz, 1953
Bonacich centrality

Two-parametric centrality measure $c(\alpha, \beta)$

β - radius of power, α - normalization parameter,

$\beta > 0$ - tied to more central (powerful) people

$\beta < 0$ - tied to less central (powerful) people

$\beta = 0$ - degree centrality

\[c_i(\alpha, \beta) = \sum_j (\alpha + \beta c_j) A_{ij} \]

\[c = \alpha \text{Ae} + \beta \text{Ac} \]

\[(I - \beta A)c = \alpha \text{Ae} \]

\[c = \alpha(I - \beta A)^{-1} \text{Ae} \]

Normalizaton: $\|c\|_2 = \sum c_i^2 = 1$

Phillip Bonacich, 1987
Centrality examples

- A) Betweenness centrality
- B) Closeness centrality
- C) Eigenvector centrality
- D) Degree centrality
- E) Katz centrality
- F) Harmonic centrality

(from Wikipedia)
Centralization (network measure) - how central the most central node in the network in relation to all other nodes.

\[C_x = \frac{\sum_i^N [C_x(p_*) - C_x(p_i)]}{\max \sum_i^N [C_x(p_*) - C_x(p_i)]} \]

- **C_x** - one of the centrality measures
- **p_*** - node with the largest centrality value
- \(\max \) - is taken over all graphs with the same number of nodes (for degree, closeness and betweenness the most centralized structure is the star graph)

Linton Freeman, 1979
Metrics comparison

- **Pearson correlation** coefficient

\[
 r = \frac{\sum_{i=1}^{n}(X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n}(X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n}(Y_i - \bar{Y})^2}}
\]

Shows linear dependence between variables, \(-1 \leq r \leq 1\) (perfect when related by linear function)

- **Spearman rank correlation** coefficient (Sperman’s rho):

Convert raw scores to ranks - sort by score: \(X_i \rightarrow x_i, Y_i \rightarrow y_i\)

\[
 \rho = 1 - \frac{6 \sum_{i=1}^{n}(x_i - y_i)^2}{n(n^2 - 1)}
\]

Shows strength of monotonic association (perfect for monotone increasing/decreasing relationship)
The Kendall tau rank distance is a metric that counts the number of pairwise disagreements between two ranking lists.

Kendall rank correlation coefficient, commonly referred to as Kendall’s tau coefficient:

\[\tau = \frac{n_c - n_d}{n(n - 1)/2} \]

- \(n_c \): number of concordant pairs,
- \(n_d \): number of discordant pairs.

- \(-1 \leq \tau \leq 1\), perfect agreement \(\tau = 1 \), reversed \(\tau = -1 \).

Example:

<table>
<thead>
<tr>
<th>Rank 1</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank 2</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>E</td>
</tr>
</tbody>
</table>

\[\tau = \frac{6 - 4}{5(5 - 1)/2} = 0.2 \]
Florentines families

Marriage Network

Betweenness Centrality

Closeness Centrality

Degree Centrality

Eccentricity Centrality

Eigenvector Centrality

Radiality Centrality

Status Centrality

PageRank Centrality
References

- Centrality in Social Networks. Conceptual Clarification, Linton C. Freeman, Social Networks, 1, 215-239, 1979
- Eigenvector-like measures of centrality for asymmetric relations, Phillip Bonacich, Paulette Lloyd, Social Networks 23, 191-201, 2001