# Structural Equivalence and Assortative Mixing 

Leonid E. Zhukov

School of Data Analysis and Artificial Intelligence<br>Department of Computer Science<br>National Research University Higher School of Economics

## Network Science



NATIONAL RESEARCH
UNIVERSITY

## Lecture outline

(1) Node equivalence

- Structural equivalence
- Regular equivalence
(2) Node similarity
- Jaccard similarity
- Cosine similarity
- Pearson correlation
(3) Assortative mixing
- Mixing by value
- Degree correlation


## Patterns of relations

- Global, statistical properties of the networks:
- average node degree (degree distribution)
- average clustering
- average path length
- Local, per vertex properties:
- node centrality
- page rank
- Pairwise properties:
- node equivalence
- node similarity
- correlation between pairs of vertices (node values)


## Structural equivalence

## Definition

Structural equivalence: two vertices are structurally equivalent if their respective sets of in-neighbors and out-neighbors are the same

rows and columns of adjacency matrix of structurally equivalent nodes are identical, "connect to the same neighbors"

## Structural equivalence

- In order for adjacent vertices to be structurally equivalent, they should have self loops.
- Sometimes called "strong structural equivalence"
- Sometimes relax requirements for self loops for adjacent nodes



## Similarity measures

- Jaccard similarity

$$
J\left(v_{i}, v_{j}\right)=\frac{\left|\mathcal{N}\left(v_{i}\right) \cap \mathcal{N}\left(v_{j}\right)\right|}{\left|\mathcal{N}\left(v_{i}\right) \cup \mathcal{N}\left(v_{j}\right)\right|}
$$



## Similarity measures

- Undirected graph
- Cosine similarity (vectors in $n$-dim space)

$$
\sigma\left(v_{i}, v_{j}\right)=\cos \left(\theta_{i j}\right)=\frac{\mathbf{v}_{i}^{T} \mathbf{v}_{j}}{\left|\mathbf{v}_{i}\right|\left|\mathbf{v}_{j}\right|}=\frac{\sum_{k} A_{i k} A_{k j}}{\sqrt{\sum A_{i k}^{2}} \sqrt{\sum A_{j k}^{2}}}
$$

- Pearson correlation coefficient:

$$
r_{i j}=\frac{\sum_{k}\left(A_{i k}-\left\langle A_{i}\right\rangle\right)\left(A_{j k}-\left\langle A_{j}\right\rangle\right)}{\sqrt{\sum_{k}\left(A_{i k}-\left\langle A_{i}\right\rangle\right)^{2}} \sqrt{\sum_{k}\left(A_{j k}-\left\langle A_{j}\right\rangle\right)^{2}}}
$$

| 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 |

## Similarity measures

- Unweighted undirected graph $A_{i k}=A_{k i}$, binary matrix, only 0 and 1
- $\sum_{k} A_{i k}=\sum_{k} A_{i k}^{2}=k_{i}$ - node degree
- $\sum_{k} A_{i k} A_{k j}=\left(A^{2}\right)_{i j}=n_{i j}$ - number of shared neighbors
- Cosine similarity (vectors in $n$-dim space)

$$
\sigma\left(v_{i}, v_{j}\right)=\cos \left(\theta_{i j}\right)=\frac{n_{i j}}{\sqrt{k_{i} k_{j}}}
$$

- Pearson correlation coefficient:

$$
r_{i j}=\frac{n_{i j}-\frac{k_{i} k_{j}}{n}}{\sqrt{k_{i}-\frac{k_{i}^{2}}{n}} \sqrt{k_{j}-\frac{k_{j}^{2}}{n}}}
$$

## Similarity matrix



Graph
Node similarity matrix

## Regular equivalence

## Definition

Regular equivalence: two vertices are regularly equivalent if they are equally related to equivalent others (not necessarily the same number of connections)


- Equivalent nodes:

$$
\{A\},\{E, F, G, H, I\},\{B, C, D\}
$$

## Equivalence example

- structural equivalence

- regular equivalence



## Vertex similairty

- Recursive definition: two vertices are regularly equivalent if they are equally related to equivalent others. Quantitative measure of regular equivalence - $\sigma_{i j}$, similarity score

$$
\begin{gathered}
\sigma_{i j}=\alpha \sum_{k, l} A_{i k} A_{j l} \sigma_{k l} \\
\boldsymbol{\sigma}=\alpha \mathbf{A} \boldsymbol{\sigma} \mathbf{A}
\end{gathered}
$$

- should have high $\sigma_{i i}$ - self similarity

$$
\begin{gathered}
\sigma_{i j}=\alpha \sum_{k, l} A_{i k} A_{j l} \sigma_{k l}+\delta_{i j} \\
\boldsymbol{\sigma}=\alpha \mathbf{A} \boldsymbol{\sigma} \mathbf{A}+\mathbf{I}
\end{gathered}
$$

## Vertex similarity

- A vertex $j$ is similar to vertex $i$ (dashed line) if $i$ has a network neighbor $v$ (solid line) that is itself similar to $j$

$$
\begin{gathered}
\sigma_{i j}=\alpha \sum_{v} A_{i v} \sigma_{v j}+\delta_{i j} \\
\boldsymbol{\sigma}=\alpha \mathbf{A} \boldsymbol{\sigma}+\mathbf{I}
\end{gathered}
$$

- Closed form solution:

$$
\boldsymbol{\sigma}=(\mathbf{I}-\alpha \mathbf{A})^{-1}
$$



## SimRank

- G-directed graph
- Two vertices are similar if they are referenced by similar vertices
- $s(a, b)$ - similarity between $a$ and $b, I()$ - set of in-neighbours

$$
\begin{gathered}
s(a, b)=\frac{C}{|I(a)||I(b)|} \sum_{i=1}^{I(a)} \sum_{j=1}^{I(b)} s\left(l_{i}(a), l_{j}(b)\right), \quad a \neq b \\
s(a, a)=1
\end{gathered}
$$

- Matrix notation:

$$
S_{i j}=\frac{C}{k_{i} k_{j}} \sum_{k, m} A_{k i} A_{m j} S_{k m}
$$

- Iterative solution starting from $s_{0}(i, j)=\delta_{i j}$


## Mixing patterns

Network mixing patterns

- Assortative mixing, "like links with like", attributed of connected nodes tend to be more similar than if there were no such edge
- Disassortative mixing, "like links with dislike", attributed of connected nodes tend to be less similar than if there were no such edge

Vertices can mix on any vertex attributes (age, sex, geography in social networks), unobserved attributes, vertex degrees

Examples:
assortative mixing - in social networks political beliefs, obesity, race disassortative mixing - dating network, food web (predator/prey), economic networks (producers/consumers)

## Assortative mixing

- Political polarization on Twitter: political retweet network ,red color -"right-learning" users, blue color - "left learning" users

- Assortative mixing $=$ homophily


## Assortative mixing

- The Spread of Obesity in a Large Social Network over 32 Years


Node colors - person's obesity status: yellow denotes an obese person (body-mass index $>30$ ) and green denotes a nonobese person. Edge colors - relationship between them: purple denotes a friendship or marital tie and orange denotes a familial tie.

## Mixing by categorical attributes

- Vertex categorical attribute ( $c_{i}$-label): color, gender, ethnicity
- How much more often do attributes match across edges than expected at random?
- Modularity :

$$
Q=\frac{m_{c}-\left\langle m_{c}\right\rangle}{m}=\frac{1}{2 m} \sum_{i j}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right) \delta\left(c_{i}, c_{j}\right)
$$

- $m_{c}$ - number of edges between vertices with same attributes $\left\langle m_{c}\right\rangle$ - expected number of edges within the same class in random network
- Assortativity coefficient:

$$
\frac{Q}{Q_{\max }}=\frac{\sum_{i j}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right) \delta\left(c_{i}, c_{j}\right)}{2 m-\sum_{i j} \frac{k_{i} k_{j}}{2 m} \delta\left(c_{i}, c_{j}\right)}
$$

## Mixing by scalar values

- Vertex scalar value (attribute) $-x_{i}$
- How much more similar are attributes across edges than expected at random?
- Average and covariance over edges

$$
\begin{aligned}
\langle x\rangle & =\frac{\sum_{i} k_{i} x_{i}}{\sum_{i} k_{i}}=\frac{1}{2 m} \sum_{i} k_{i} x_{i}=\frac{1}{2 m} \sum_{i j} A_{i j} x_{i} \\
\operatorname{var} & =\frac{1}{2 m} \sum_{i j} A_{i j}\left(x_{i}-\langle x\rangle\right)^{2}=\frac{1}{2 m} \sum_{i} k_{i}\left(x_{i}-\langle x\rangle\right)^{2} \\
\operatorname{cov} & =\frac{1}{2 m} \sum_{i j} A_{i j}\left(x_{i}-\langle x\rangle\right)\left(x_{j}-\langle x\rangle\right)
\end{aligned}
$$

- Assortativity coefficient

$$
r=\frac{\operatorname{cov}}{v a r}=\frac{\sum_{i j}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right) x_{i} x_{j}}{\sum_{i j}\left(k_{i} \delta_{i j}-\frac{k_{i} k_{j}}{2 m}\right) x_{i} x_{j}}
$$

## Mixing by node degree

- Assortative mixing by node degree, $x_{i} \leftarrow k_{i}$

$$
r=\frac{\sum_{i j}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right) k_{i} k_{j}}{\sum_{i j}\left(k_{i} \delta_{i j}-\frac{k_{i} k_{j}}{2 m}\right) k_{i} k_{j}}
$$

- Computations:

$$
\begin{aligned}
& S_{1}=\sum_{i} k_{i}=2 m \\
& S_{2}=\sum_{i} k_{i}^{2} \\
& S_{3}=\sum_{i} k_{i}^{3} \\
& S_{e}=\sum_{i j} A_{i j} k_{i} k_{j}
\end{aligned}
$$

- Assortatitivity coefficient

$$
r=\frac{S_{e} S_{1}-S_{2}^{2}}{S_{3} S_{1}-S_{2}^{2}}
$$

## Mixing by node degree

- Assortative network: interconnected high degree nodes - core, low degree nodes - periphery
- Disassortative network: high degree nodes connected to low degree nodes, star-like structure


Assortative network
Disassortative network

## References

- White, D., Reitz, K.P. Measuring role distance: structural, regular and relational equivalence. Technical report, University of California, Irvine, 1985
- S. Borgatti, M. Everett. The class of all regular equivalences: algebraic structure and computations. Social Networks, v 11, p65-68, 1989
- E. A. Leicht, P.Holme, and M. E. J. Newman. Vertex similarity in networks. Phys. Rev. E 73, 026120, 2006
- G. Jeh and J. Widom. SimRank: A Measure of Structural-Context Similarity. Proceedings of the eighth ACM SIGKDD, p 538-543. ACM Press, 2002
- M. E. J. Newman. Assortative mixing in networks. Phys. Rev. Lett. 89, 208701, 2002.
- M. Newman. Mixing patterns in networks. Phys. Rev. E, Vol. 67, p 026126, 2003
- M. McPherson, L. Smith-Lovin, and J. Cook. Birds of a Feather: Homophily in Social Networks, Annu. Rev. Sociol, 27:415-44, 2001.

