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Patterns of relations

Global, statistical properties of the networks:
- average node degree (degree distribution)
- average clustering
- average path length

Local, per vertex properties:
- node centrality
- page rank

Pairwise properties:
- node equivalence
- node similarity
- correlation between pairs of vertices (node values)
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Structural equivalence

Definition

Structural equivalence: two vertices are structurally equivalent if their
respective sets of in-neighbors and out-neighbors are the same

u1 u2 v1 v2 w

u1 0 0 1 1 0

u2 0 0 1 1 0

v1 0 0 0 1 1

v2 0 0 1 0 1

w 0 0 0 0 0

rows and columns of adjacency matrix of structurally equivalent nodes are
identical, ”connect to the same neighbors”

Leonid E. Zhukov (HSE) Lecture 7 27.02.2016 4 / 23



Structural equivalence

In order for adjacent vertices to be structurally equivalent, they
should have self loops.

Sometimes called ”strong structural equivalence”

Sometimes relax requirements for self loops for adjacent nodes
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Similarity measures

Jaccard similarity

J(vi , vj) =
|N (vi ) ∩N (vj)|
|N (vi ) ∪N (vj)|
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Similarity measures

Undirected graph

Cosine similarity (vectors in n-dim space)

σ(vi , vj) = cos(θij) =
vTi vj
|vi ||vj |

=

∑
k AikAkj√∑
A2
ik

√∑
A2
jk

Pearson correlation coefficient:

rij =

∑
k(Aik − 〈Ai 〉)(Ajk − 〈Aj〉)√∑

k(Aik − 〈Ai 〉)2
√∑

k(Ajk − 〈Aj〉)2
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Similarity measures

Unweighted undirected graph Aik = Aki , binary matrix, only 0 and 1∑
k Aik =

∑
k A

2
ik = ki - node degree∑

k AikAkj = (A2)ij = nij - number of shared neighbors

Cosine similarity (vectors in n-dim space)

σ(vi , vj) = cos(θij) =
nij√
kikj

Pearson correlation coefficient:

rij =
nij −

kikj
n√

ki −
k2
i
n

√
kj −

k2
j

n
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Similarity matrix

Graph Node similarity matrix
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Regular equivalence

Definition

Regular equivalence: two vertices are regularly equivalent if they are
equally related to equivalent others (not necessarily the same number of
connections)

Equivalent nodes:
{A}, {E ,F ,G ,H, I},{B,C ,D}
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Equivalence example

structural equivalence

regular equivalence
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Vertex similairty

Recursive definition: two vertices are regularly equivalent if they are
equally related to equivalent others. Quantitative measure of regular
equivalence - σij , similarity score

σij = α
∑
k,l

AikAjlσkl

σσσ = αAσA

should have high σii - self similarity

σij = α
∑
k,l

AikAjlσkl + δij

σσσ = αAσA + I
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Vertex similarity

A vertex j is similar to vertex i (dashed line) if i has a network
neighbor v (solid line) that is itself similar to j

σij = α
∑
v

Aivσvj + δij

σσσ = αAσ + I

Closed form solution:
σσσ = (I− αA)−1

Leicht, Holme, and Newman, 2006
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SimRank

G - directed graph

Two vertices are similar if they are referenced by similar vertices

s(a, b) - similarity between a and b, I () - set of in-neighbours

s(a, b) =
C

|I (a)||I (b)|

I (a)∑
i=1

I (b)∑
j=1

s(Ii (a), Ij(b)), a 6= b

s(a, a) = 1

Matrix notation:

Sij =
C

kikj

∑
k,m

AkiAmjSkm

Iterative solution starting from s0(i , j) = δij
Jeh and Widom, 2002
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Mixing patterns

Network mixing patterns

Assortative mixing, ”like links with like”, attributed of connected
nodes tend to be more similar than if there were no such edge

Disassortative mixing, ”like links with dislike”, attributed of
connected nodes tend to be less similar than if there were no such
edge

Vertices can mix on any vertex attributes (age, sex, geography in social
networks), unobserved attributes, vertex degrees

Examples:
assortative mixing - in social networks political beliefs, obesity, race
disassortative mixing - dating network, food web (predator/prey),
economic networks (producers/consumers)
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Assortative mixing

Political polarization on Twitter: political retweet network ,red color -
”right-learning” users, blue color - ”left learning” users

Assortative mixing = homophily

Conover et al., 2011
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Assortative mixing

The Spread of Obesity in a Large Social Network over 32 Years

Node colors - person’s obesity status: yellow denotes an obese person
(body-mass index > 30) and green denotes a nonobese person.
Edge colors - relationship between them: purple denotes a friendship or
marital tie and orange denotes a familial tie.
Christakis and Fowler, 2007
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Mixing by categorical attributes

Vertex categorical attribute (ci -label): color, gender, ethnicity

How much more often do attributes match across edges than
expected at random?

Modularity :

Q =
mc − 〈mc〉

m
=

1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci , cj)

mc - number of edges between vertices with same attributes
〈mc〉 - expected number of edges within the same class in random
network

Assortativity coefficient:

Q

Qmax
=

∑
ij

(
Aij −

kikj
2m

)
δ(ci , cj)

2m −
∑

ij
kikj
2m δ(ci , cj)
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Mixing by scalar values

Vertex scalar value (attribute) - xi
How much more similar are attributes across edges than expected at
random?
Average and covariance over edges

〈x〉 =

∑
i kixi∑
i ki

=
1

2m

∑
i

kixi =
1

2m

∑
ij

Aijxi

var =
1

2m

∑
ij

Aij(xi − 〈x〉)2 =
1

2m

∑
i

ki (xi − 〈x〉)2

cov =
1

2m

∑
ij

Aij(xi − 〈x〉)(xj − 〈x〉)

Assortativity coefficient

r =
cov

var
=

∑
ij

(
Aij −

kikj
2m

)
xixj∑

ij

(
kiδij −

kikj
2m

)
xixj
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Mixing by node degree

Assortative mixing by node degree, xi ← ki

r =

∑
ij

(
Aij −

kikj
2m

)
kikj∑

ij

(
kiδij −

kikj
2m

)
kikj

Computations:
S1 =

∑
i ki = 2m

S2 =
∑

i k
2
i

S3 =
∑

i k
3
i

Se =
∑

ij Aijkikj

Assortatitivity coefficient

r =
SeS1 − S2

2

S3S1 − S2
2
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Mixing by node degree

Assortative network: interconnected high degree nodes - core, low
degree nodes - periphery
Disassortative network: high degree nodes connected to low degree
nodes, star-like structure

Assortative network Disassortative network
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