Network structure

Leonid E. Zhukov

School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics

Network Science

NATIONAL RESEARCH UNIVERSITY

Network structure

Typical network structure

Core-periphery structure of a network

image from J. Leskovec, K. Lang, 2010

Graph cores

Definition

A k-core is the largest subgraph such that each vertex is connected to at least k others in subset

Every vertex in k-core has a degree $k_{i} \geq k$ $(k+1)$-core is always subgraph of k-core The core number of a vertex is the highest order of a core that contains this vertex

k-core decomposition

V. Batageli, M. Zaversnik, 2002

- If from a given graph $G=(\mathrm{V}, \mathrm{L})$ recursively delete all vertices, and lines incident with them, of degree less than k, the remaining graph is the k -core.

K-cores

Zachary karate club: 1,2,3,4 - cores

k-cores

Graph cliques

Definition

A clique is a complete (fully connected) subgraph, i.e. a set of vertices where each pair of vertices is connected.

Cliques can overlap

Graph cliques

- A maximal clique is a clique that cannot be extended by including one more adjacent vertex (not included in larger one)
- A maximum clique is a clique of the largest possible size in a given graph

Maximal

Maximal
\& Maximum

Not maximal

Not clique

- Graph clique number is the size of the maximum clique

image from D. Eppstein

Graph cliques

Maximum cliques

Maximal cliques:
Clique size:
$\begin{array}{llll}2 & 3 & 4 & 5\end{array}$
Number of cliques: $\begin{array}{llll}11 & 21 & 2 & 2\end{array}$

Graph cliques

Computational issues:

- Finding click of fixed given size $k-O\left(n^{k} k^{2}\right)$
- Finding maximum clique $O\left(3^{n / 3}\right)$
- But in sparse graphs...

Network communities

Definition

Network communities are groups of vertices such that vertices inside the group connected with many more edges than between groups.

- Community detection is an assignment of vertices to communities.
- Will consider non-overlapping communities
- Graph partitioning problem

Network communities

What makes a community (cohesive subgroup):

- Mutuality of ties. Almost everyone in the group has ties (edges) to one another
- Compactness. Closeness or reachability of group members in small number of steps, not necessarily adjacency
- Density of edges. High frequency of ties within the group
- Separation. Higher frequency of ties among group members compared to non-members

Community density

- Graph $G(V, E), n=|V|, m=|E|$
- Community - set of nodes S
n_{s}-number of nodes in $S, \quad m_{s}$ - number of edges in S
- Graph density

$$
\rho=\frac{m}{n(n-1) / 2}
$$

- community internal density

$$
\delta_{i n t}(C)=\frac{m_{s}}{n_{s}\left(n_{s}-1\right) / 2}
$$

- external edges density

$$
\delta_{e x t}(C)=\frac{m_{e x t}}{n_{c}\left(n-n_{c}\right)}
$$

- community (cluster): $\delta_{\text {int }}>\rho, \delta_{\text {ext }}<\rho$

Modularity

- Compare fraction of edges within the cluster to expected fraction in random graph with identical degree sequence

$$
Q=\frac{1}{4}\left(m_{s}-E\left(m_{s}\right)\right)
$$

- Modularity score

$$
Q=\frac{1}{2 m} \sum_{i j}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right) \delta\left(c_{i}, c_{j}\right),=\sum_{u}\left(e_{u u}-a_{u}^{2}\right)
$$

$e_{u u}$ - fraction of edges within community u
$a_{u}=\sum_{u} e_{u v}$ - fraction of ends of edges attached to nodes in u

- The higher the modularity score - the better are communities
- Modularity score range $Q \in[-1 / 2,1)$, single community $Q=0$

Heuristic approach

Focus on edges that connect communities. Edge betweenness -number of shortest paths $\sigma_{s t}(e)$ going through edge e

$$
C_{B}(e)=\sum_{s \neq t} \frac{\sigma_{s t}(e)}{\sigma_{s t}}
$$

Construct communities by progressively removing edges

Edge betweenness

Newman-Girvan, 2004
Algorithm: Edge Betweenness
Input: graph $G(V, E)$
Output: Dendrogram

repeat

For all $e \in E$ compute edge betweenness $C_{B}(e)$;
remove edge e_{i} with largest $C_{B}\left(e_{i}\right)$;
until edges left;
If bi-partition, then stop when graph splits in two components (check for connectedness)

Edge betweenness

Hierarchical algorithm, dendrogram

Edge betweenness

Zachary karate club

Edge betweenness

Zachary karate club

Edge betweenness

Zachary karate club

Edge betweenness

Edge betweenness

best: clusters $=6$, modularity $=0.345$

Edge betweenness

Zachary karate club

References

- Finding and evaluating community structure in networks, M.E.J. Newman, M. Girvan, Phys. Rev E, 69, 2004
- Modularity and community structure in networks, M.E.J. Newman, PNAS, vol 103, no 26, pp 8577-8582, 2006
- S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):2764, 2007.
- S. Fortunato. Community detection in graphs, Physics Reports, Vol. 486, Iss. 35, pp 75-174, 2010

