### Network structure

#### Leonid E. Zhukov

School of Data Analysis and Artificial Intelligence
Department of Computer Science
National Research University Higher School of Economics

#### **Network Science**



## Network structure



# Typical network structure

### Core-periphery structure of a network



image from J. Leskovec, K. Lang, 2010

## Graph cores

#### Definition

A k-core is the largest subgraph such that each vertex is connected to at least k others in subset





Every vertex in k-core has a degree  $k_i > k$ (k+1)-core is always subgraph of k-core The core number of a vertex is the highest order of a core that contains this vertex

# k-core decomposition

#### V. Batageli, M. Zaversnik, 2002

• If from a given graph  $G=(V,\,E)$  recursively delete all vertices, and lines incident with them, of degree less than k, the remaining graph is the k-core.



## K-cores

Zachary karate club: 1,2,3,4 - cores



## k-cores



k-cores: 1:1458, 2:594, 3:142, 4:12, 5:6

k-shells: 1:864-red, 2:452-pale green, 3:130-green, 5:6-blue, 6:6-purple

## Definition

A *clique* is a complete (fully connected) subgraph, i.e. a set of vertices where each pair of vertices is connected.



### Cliques can overlap

- A maximal clique is a clique that cannot be extended by including one more adjacent vertex (not included in larger one)
- A maximum clique is a clique of the largest possible size in a given graph



• Graph clique number is the size of the maximum clique

image from D. Eppstein

## Maximum cliques





Maximal cliques:

Clique size: 2 3 4 5 Number of cliques: 11 21 2 2

Zachary, 1977

### Computational issues:

- Finding click of fixed given size  $k O(n^k k^2)$
- Finding maximum clique  $O(3^{n/3})$
- But in sparse graphs...

## Network communities

#### **Definition**

*Network communities* are groups of vertices such that vertices inside the group connected with many more edges than between groups.



- Community detection is an assignment of vertices to communities.
- Will consider non-overlapping communities
- Graph partitioning problem

## Network communities

What makes a community (cohesive subgroup):

- Mutuality of ties. Almost everyone in the group has ties (edges) to one another
- Compactness. Closeness or reachability of group members in small number of steps, not necessarily adjacency
- Density of edges. High frequency of ties within the group
- Separation. Higher frequency of ties among group members compared to non-members

Wasserman and Faust

# Community density

- Graph G(V, E), n = |V|, m = |E|
- Community set of nodes S $n_s$ -number of nodes in S,  $m_s$  - number of edges in S
- Graph density

$$\rho = \frac{m}{n(n-1)/2}$$

community internal density

$$\delta_{int} = \frac{m_s}{n_s(n_s - 1)/2}$$

external edges density

$$\delta_{\text{ext}} = \frac{m_{\text{ext}}}{n_{\text{s}}(n - n_{\text{s}})}$$

• community (cluster):  $\delta_{int} > \rho$ ,  $\delta_{ext} < \rho$ 

# Modularity

 Compare fraction of edges within the cluster to expected fraction in random graph with identical degree sequence

$$Q=\frac{1}{4}(m_s-E(m_s))$$

Modularity score

$$Q = \frac{1}{2m} \sum_{ij} \left( A_{ij} - \frac{k_i k_j}{2m} \right) \delta(c_i, c_j), = \sum_{u} \left( \frac{m_u}{m} - \left( \frac{k_u}{2m} \right)^2 \right)$$

 $m_u$  - number of internal edges in a community u,  $k_u$  - sum of node degrees within a community

• Modularity score range  $Q \in [-1/2, 1)$ , single community Q = 0

# Modularity



• The higher the modularity score - the better are communities

from A.L. Barabasi 2016

# Heuristic approach

Focus on edges that connect communities.

Edge betweenness -number of shortest paths  $\sigma_{st}(e)$  going through edge e

$$C_B(e) = \sum_{s \neq t} \frac{\sigma_{st}(e)}{\sigma_{st}}$$



Construct communities by progressively removing edges

### Newman-Girvan, 2004

Output: Dendrogram

```
Algorithm: Edge Betweenness Input: graph G(V,E)
```

## repeat

```
For all e \in E compute edge betweenness C_B(e); remove edge e_i with largest C_B(e_i);
```

### until edges left;

If bi-partition, then stop when graph splits in two components (check for connectedness)

Hierarchical algorithm, dendrogram











best: clusters = 6, modularity = 0.345





## References

- Finding and evaluating community structure in networks, M.E.J. Newman, M. Girvan, Phys. Rev E, 69, 2004
- Modularity and community structure in networks, M.E.J. Newman, PNAS, vol 103, no 26, pp 8577-8582, 2006
- S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):2764, 2007.
- S. Fortunato. Community detection in graphs, Physics Reports, Vol. 486, Iss. 35, pp 75-174, 2010