

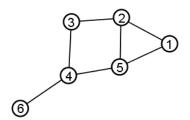
Descriptive Network Analysis Social Network Analysis. MAGoLEGO course. Lecture 2

Leonid Zhukov

lzhukov@hse.ru www.leonidzhukov.net/hse/2019/sna

National Research University Higher School of Economics School of Data Analysis and Artificial Intelligence, Department of Computer Science

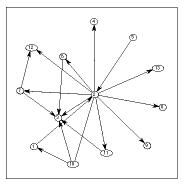
- A graph G = (V, E) is an ordered pair of sets: a set of vertices V and a set edges E, where n = |V|, m = |E|
- An *edge* $e_{ij} = (v_i, v_j)$ is pair of vertices (ordered pair for directed graph)
- Adjacency matrix $A^{n \times n}$ is a matrix with nonzero element a_{ij} when there is an edge e_{ij}

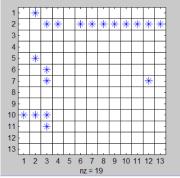


	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]
[1,]	0	1	0	0	1	0
[2,]	1	0	1	0	1	0
[3,]	0	1	0	1	0	0
[4,]	0	0	1	0	1	1
[5,]	1	1	0	1	0	0
[6,]	0	0	0	1	0	0

Graphs and matrices

Graph G(n,m), adjacency matrix $A_{ij}^{n\times n}$, edge $i \rightarrow j$, m = nnz(A)





Node degree

- Two nodes/vertices are adjacent if they share a common edge
- An edge and a node on that edge are called incident.
- The neighborhood N(v) of a node v in a graph G is the set of nodes adjacent to v.
- The *degree* k_i of a nodes v_i is the total number of nodes adjacent to it, $k_i = |\mathcal{N}(v_i)|$
- Average node degree:

$$\langle k \rangle = \frac{1}{n} \sum_{i} k_{i} = \frac{2m}{n} = \frac{2|E|}{|V|}$$



Node degree

in directed networks:

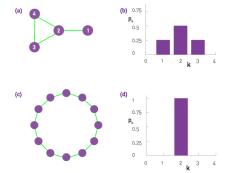
- k_i^{in} incoming degree, number of edges/links pointing to node i
- k_i^{out} outgoing degree, number of edges/links pointing from node i
- total node degree $k_i = k_i^{in} + k_i^{out}$
- Average in and out degrees are equal:

$$\langle k^{in} \rangle = \frac{1}{n} \sum_{i} k_{i}^{in} = \langle k^{out} \rangle = \frac{1}{n} \sum_{i} k_{i}^{out} = \frac{m}{n} = \frac{|E|}{|V|}$$

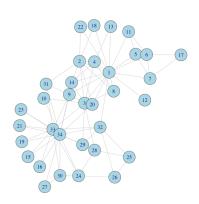
Degree distribution

- k_i node degree, $k_i = 1, 2, ... k_{max}$
- n_k number of nodes with degree k, total nodes $n = \sum_k n_k$
- Degree distribution is a fraction of the nodes with degree k

$$P(k_i = k) = P(k) = P_k = \frac{n_k}{\sum_k n_k} = \frac{n_k}{n}$$

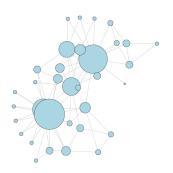


Node degrees

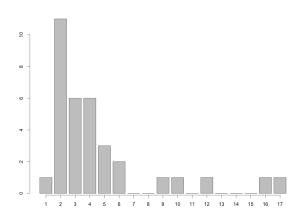


igraphdata: data(karate), igraph:plot()

Node degrees

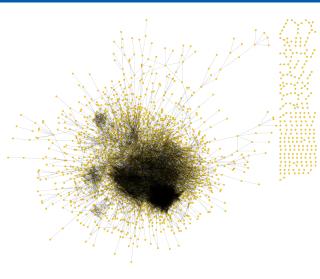


Node degree histogram



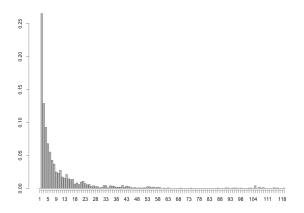
igraph: degree.distribution()

Degree distribution



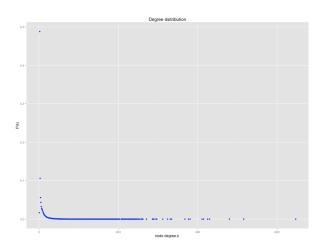
igraphdata: data(yeast)

Degree distribution



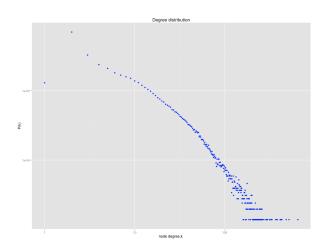
igraph: degree.distribution()

Power law degree distribution



Power law degree distribution

log-log scale



Discrete power law distribution

Power law distribution

$$P(k) = Ck^{-\gamma} = \frac{1}{k^{\gamma}}C$$

Log-log coordinates

$$\log P(k) = -\gamma \log k + \log C$$
$$y = -\gamma x + b$$

Distribution parameter estimation

• Maximum likelihood estimation of parameter γ :

$$\gamma = 1 + n \left[\sum_{i=1}^{n} \ln \frac{k_i}{k_{\min}} \right]^{-1}$$

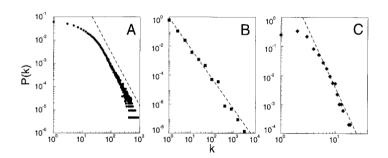
error estimate

$$\sigma = \sqrt{n} \left[\sum_{i=1}^{n} \ln \frac{k_i}{k_{\min}} \right]^{-1} = \frac{\gamma - 1}{\sqrt{n}}$$

• Optimal value of k_{min} can be found using Kolmogorov-Smirnov test for optimal distribution fitting

igraph:power.law.fit()

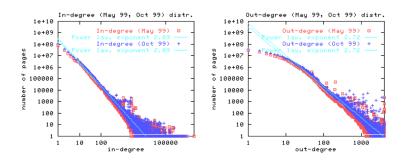
Power law networks



Actor collaboration graph, N=212,250 nodes, $\langle k \rangle=28.8, \gamma=2.3$ WWW, N = 325,729 nodes, $\langle k \rangle=5.6, \gamma=2.1$ Power grid data, N = 4941 nodes, $\langle k \rangle=5.5, \gamma=4$

Barabasi et.al, 1999

Power law networks

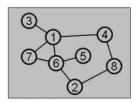


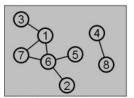
In- and out- degrees of WWW crawl 1999

Broder et.al, 1999

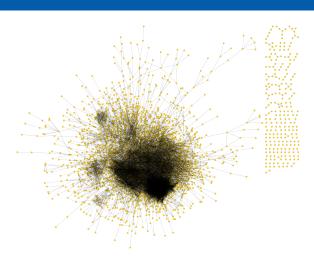
Graph connectivity

- A path from v_i to v_j is a sequence of edges that joins two vertices. (It also ordered list of vertices such that that there is an edge to the next vertex on the list)
- A graph is connected if there a paths between any two vertices.
- Connected component is a maximal connected subgraph of G





Graph connectivity

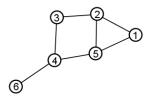


Connected components: 92 Component sizes: $2375\ 7\ 7\ 7\ 6\ 5\ 5\ 5\ 5\ 5\ 4\ 4\ 4\ 4$

Graph connectivity

- The distance $d_G(v_i, v_j)$ between two vertices is the number of edges in the shortest path from v_i to v_j
- Graph *diameter* is the largest shortest path: $D = \max_{i,j} d_G(v_i, v_j)$
- Average path length:

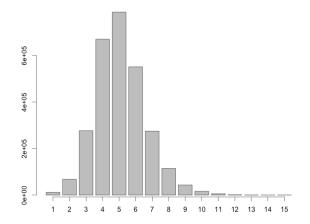
$$\langle L \rangle = \frac{1}{n(n-1)} \sum_{i \neq j} d_G(v_i, v_j)$$



igraph: shortest.paths(), diameter(), average.path.length(), path.length.hist()

Graph average path length

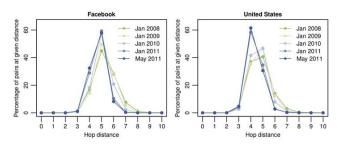
"Yeast" graph, n = 2617, m = 11855



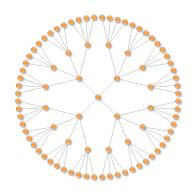
Diameter D=15, average path length $\langle L \rangle = 5.1$

Small world

- Email graph:
 - D. Watts (2001), 48,000 senders, $\langle L \rangle \approx 6$
- MSN Messenger graph: J. Lescovec et al (2007), 240mln users, $\langle L \rangle \approx 6.6$
- For a book of a wards.
- Facebook graph:
 - L. Backstrom et al (2012), 721 mln users, $\langle L \rangle \approx 4.74$



Simple model



An estimate: $z^d = N$, $d = \log N / \log z$ $N \approx 6.7$ bln, z = 50 friends, $d \approx 5.8$.

Triads, transitivity and clustering

Facebook friendship

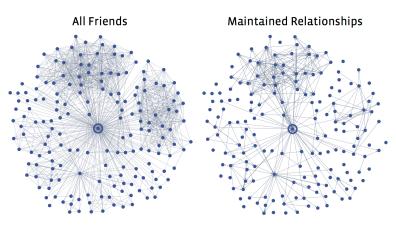


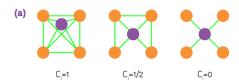
image from Cameron Marlow, Facebook

Clustering coefficient

How neighbors of a given node connected to each other

Local clustering coefficient (per vertex):

$$C_i = rac{ ext{number of links in } \mathcal{N}_i}{k_i(k_i - 1)/2}$$



Average clustering coefficient:

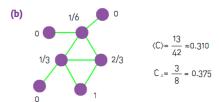
$$\bar{C} = \frac{1}{n} \sum_{i=1}^{n} C_i$$

igraph:transitivity(type="local")

Clustering coefficient

• Global clustering coefficient:

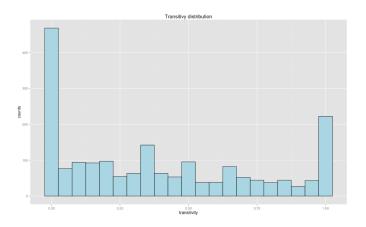
$$\textit{C} = \frac{3 \times \text{number of triangles}}{\text{number of connected triplets of vertices}}$$



igraph:transitivity(type="global")

Clustering coefficient

Yeast graph



Global clustering coefficient: C = 0.468

Statistical properties

- Power-law degree distribution
- Small average path length
- High clustering coefficient (transitivity)
- Gigantic connected component

References

- Statistical Analysis of Network Data with R. Eric Kolaczyk, Gabor Csardi. Springer, 2014
- Social Network Analysis: Methods and Applications. S.
 Wasserman, K. Faust, Cambridge University Press, 1994
- Networks: An Introduction. Mark Newman. Oxford University Press, 2010.
- Power laws, Pareto distributions and Zipf's law, M. E. J.
 Newman, Contemporary Physics, pages 323–351, 2005.
- Power-Law Distribution in Empirical Data, A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Review, Vol 51, No 4, pp. 661-703, 2009.