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e Agraph G = (V,E) is an ordered pair of sets: a set of vertices V
and a set edges E, where n = |V|, m = |E|

® Anedge ej = (v;,v;) is pair of vertices (ordered pair for directed

graph)

® Adjacency matrix A"*" is a matrix with nonzero element a;;
when there is an edge ¢;;
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Graphs and matrices

Graph G(n, m), adjacency matrix A,f}x", edgei — j,m = nnz(A)
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Node degree

Two nodes/vertices are adjacent if they share a common edge
® Anedge and a node on that edge are called incident.

The neighborhood N (v) of a node v in a graph G is the set of
nodes adjacent to v.

The degree k; of a nodes v; is the total number of nodes
adjacent to it, k; = [N (v;)]

Average node degree:
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Node degree

in directed networks:
® k" -incoming degree, number of edges/links pointing to node
i
® kUt - outgoing degree, number of edges/links pointing from
node |
* total node degree k; = k" + kout
® Average in and out degrees are equal:
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Degree distribution

® ki-node degree, ki = 1,2, ...kmax
® ny - number of nodes with degree k, total nodes n = ), ny
® Degree distribution is a fraction of the nodes with degree k

n n
P(ki = k) = P(k) = Py = Zkknk = Fk
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Node degrees

igraphdata: data(karate), igraph:plot()
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Node degrees

OOOO
00 [e]
08 ©
2 %
© @]
oo o (@]

o O o

igraphdata: data(karate), igprah:plot()
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Node degree histogram
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igraph: degree.distribution()

Lecture 2 Higher School of Economics April 19,2019 9/1



Degree distribution

igraphdata: data(yeast)
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Degree distribution
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igraph: degree.distribution()
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Power law degree distribution

Degree dsitribution

PiK)

node degree k
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Power law degree distribution

log-log scale

Degree distribution

Pk

node degree
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Discrete power law distribution

® Power law distribution
1
P(ky=Ck—" = —C
(k) =
® Log-log coordinates

logP(k) = —ylogk + log C

y=—yx+b
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Distribution parameter estimation

® Maximum likelihood estimation of parameter ~:

Zln mm] B

e Optimal value of knj, can be found using Kolmogorov-Smirnov
test for optimal distribution fitting

vy=1+n

® error estimate

igraph:power.law.fit()
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Power law networks

Actor collaboration graph, N=212,250 nodes, (k) = 28.8,v = 2.3
WWW, N = 325,729 nodes, (k) = 5.6,y = 2.1
Power grid data, N = 4941 nodes, (k) = 5.5, v = 4

Barabasi et.al, 1999
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Power law networks
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In- and out- degrees of WWW crawl 1999

Broder et.al, 1999
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Graph connectivity

® Apath from v; to v; is a sequence of edges that joins two
vertices. (It also ordered list of vertices such that that there is
an edge to the next vertex on the list)

e A graph is connected if there a paths between any two vertices.
® Connected component is a maximal connected subgraph of G
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Graph connectivity

Connected components: 92
Componentsizes: 2375 7776 5555554444
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Graph connectivity

® The distance dg(vj, vj) between two vertices is the number of
edges in the shortest path from v; to v;

® Graph diameter is the largest shortest path:
D= max; ; dg(v,', Vj)

® Average path length:

0= gy S el
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igraph: shortest.paths(), diameter(), average.path.length(), path.length.hist()
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Graph average path length

"Yeast” graph, n = 2617, m = 11855
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Diameter D = 15, average path length (L) = 5.1
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Small world

® Email graph:
D. Watts (2001), 48,000 senders, (L) ~ 6
* MSN Messenger graph:
J. Lescovec et al (2007), 240min users, (L) ~ 6.6
® Facebook graph:
L. Backstrom et al (2012), 721 min users, (L) ~ 4.74

Facebook United States
2 - +— Jan 2008 2 - +— Jan 2008
Jan 2009 Jan 2009
Jan 2010 Jan 2010
—+— Jan2011 —— Jan 2011

2 2\ —— May 2011

—+— May 2011

Percentage of pairs at given distance
Percentage of pairs at given distance

Hop distance Hop distance

figures from L.Backstrom, 2012
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Simple model
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An estimate: 27 = N,d = log N/ log z
N = 6.7 bln, z = 50 friends, d ~ 5.8.
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Triads, transitivity and clustering

Facebook friendship

All Friends Maintained Relationships
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image from Cameron Marlow, Facebook
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Clustering coefficient

How neighbors of a given node connected to each other
® |ocal clustering coefficient (per vertex):
number of links in \V;

ki(ki —1)/2

G =

igraph:transitivity(type="local”)
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Clustering coefficient

® Global clustering coefficient:

3 x number of triangles
number of connected triplets of vertices
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igraph:transitivity(type="global")
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Clustering coefficient

Yeast graph

Transitivy distribution

transiivity

Global clustering coefficient: C = 0.468
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Statistical properties

Power-law degree distribution

Small average path length

High clustering coefficient (transitivity)

Gigantic connected component
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