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Graphs

• A graph G = (V, E) is an ordered pair of sets: a set of vertices V
and a set edges E, where n = |V|,m = |E|

• An edge eij = (vi, vj) is pair of vertices (ordered pair for directed
graph)

• Adjacencymatrix An×n is a matrix with nonzero element aij
when there is an edge eij
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Graphs and matrices

Graph G(n,m), adjacency matrix An×n
ij , edge i → j,m = nnz(A)
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Node degree

• Two nodes/vertices are adjacent if they share a common edge
• An edge and a node on that edge are called incident.
• The neighborhoodN (v) of a node v in a graph G is the set of

nodes adjacent to v.
• The degree ki of a nodes vi is the total number of nodes

adjacent to it, ki = |N (vi)|
• Average node degree:

⟨k⟩ = 1

n

∑
i

ki =
2m
n

=
2|E|
|V|

Lecture 2 Higher School of Economics April 19, 2019 4 / 1



Node degree

in directed networks:
• kini - incoming degree, number of edges/links pointing to node
i

• kouti - outgoing degree, number of edges/links pointing from
node i

• total node degree ki = kini + kouti

• Average in and out degrees are equal:

⟨kin⟩ = 1

n

∑
i

kini = ⟨kout⟩ = 1

n

∑
i

kouti =
m
n

=
|E|
|V|
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Degree distribution

• ki - node degree, ki = 1, 2, ...kmax
• nk - number of nodes with degree k, total nodes n =

∑
k nk

• Degree distribution is a fraction of the nodes with degree k

P(ki = k) = P(k) = Pk =
nk∑
k nk

=
nk
n
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Node degrees

igraphdata: data(karate), igraph:plot()
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Node degrees

igraphdata: data(karate), igprah:plot()
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Node degree histogram

igraph: degree.distribution()
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Degree distribution

igraphdata: data(yeast)
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Degree distribution

igraph: degree.distribution()
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Power law degree distribution
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Power law degree distribution

log-log scale
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Discrete power law distribution

• Power law distribution

P(k) = Ck−γ =
1

kγ
C

• Log-log coordinates

log P(k) = −γ log k+ log C

y = −γ x+ b
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Distribution parameter estimation

• Maximum likelihood estimation of parameter γ:

γ = 1 + n

[
n∑

i=1

ln
ki

kmin

]−1

• error estimate

σ =
√
n

[
n∑

i=1

ln
ki

kmin

]−1

=
γ − 1√

n

• Optimal value of kmin can be found using Kolmogorov-Smirnov
test for optimal distribution fitting

igraph:power.law.fit()
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Power law networks

Actor collaboration graph, N=212,250 nodes, ⟨k⟩ = 28.8, γ = 2.3
WWW, N = 325,729 nodes, ⟨k⟩ = 5.6, γ = 2.1
Power grid data, N = 4941 nodes, ⟨k⟩ = 5.5, γ = 4
Barabasi et.al, 1999
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Power law networks

In- and out- degrees of WWW crawl 1999
Broder et.al, 1999
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Graph connectivity

• A path from vi to vj is a sequence of edges that joins two
vertices. (It also ordered list of vertices such that that there is
an edge to the next vertex on the list)

• A graph is connected if there a paths between any two vertices.
• Connected component is a maximal connected subgraph of G
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Graph connectivity

Connected components: 92
Component sizes: 2375 7 7 7 6 5 5 5 5 5 5 4 4 4 4
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Graph connectivity

• The distance dG(vi, vj) between two vertices is the number of
edges in the shortest path from vi to vj

• Graph diameter is the largest shortest path:
D = maxi,j dG(vi, vj)

• Average path length:

⟨L⟩ = 1

n(n− 1)

∑
i ̸=j

dG(vi, vj)

igraph: shortest.paths(), diameter(), average.path.length(), path.length.hist()
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Graph average path length

”Yeast” graph, n = 2617,m = 11855

Diameter D = 15, average path length ⟨L⟩ = 5.1
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Small world

• Email graph:
D. Watts (2001), 48,000 senders, ⟨L⟩ ≈ 6

• MSNMessenger graph:
J. Lescovec et al (2007), 240mln users, ⟨L⟩ ≈ 6.6

• Facebook graph:
L. Backstrom et al (2012), 721 mln users, ⟨L⟩ ≈ 4.74

figures from L.Backstrom, 2012
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Simple model

An estimate: zd = N, d = logN/ log z
N ≈ 6.7 bln, z = 50 friends, d ≈ 5.8.
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Triads, transitivity and clustering

Facebook friendship

image from Cameron Marlow, Facebook
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Clustering coefficient

How neighbors of a given node connected to each other
• Local clustering coefficient (per vertex):

Ci =
number of links inNi

ki(ki − 1)/2

• Average clustering coefficient:

C̄ =
1

n

n∑
i=1

Ci

igraph:transitivity(type=”local”)
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Clustering coefficient

• Global clustering coefficient:

C =
3× number of triangles

number of connected triplets of vertices

igraph:transitivity(type=”global”)
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Clustering coefficient

Yeast graph

Global clustering coefficient: C = 0.468
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Statistical properties

• Power-law degree distribution
• Small average path length
• High clustering coefficient (transitivity)
• Gigantic connected component
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