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Network models

network features:
• Power-law (heavy-tailed) degree distribution
• Small average distance (graph diameter)
• Large clustering coefficient (transitivity)
• Giant connected component

Generative models:
• Random graph model (Erdos & Renyi, 1959)
• Preferential attachement model (Barabasi & Albert, 1999)
• Small world model (Watts & Strogatz, 1998)
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Random graph model

top: n = 12, p = 1/6 bottom: n = 100, p = 0.03
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Random graph model

Graph G{E, V}, nodes n = |V|, edgesm = |E|
Erdos and Renyi, 1959.

• Gn,p - each pair out of N = n(n−1)
2 is connected with probability

p,
number of edgesm - random number

⟨m⟩ = p
n(n− 1)

2

⟨k⟩ = 1

n

∑
i

ki =
2⟨m⟩
n

= p (n− 1) ≈ pn

ρ =
⟨m⟩

n(n− 1)/2
= p
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Random graph model

p < pc p = pc p > pc

Structural changes happens when increasing p

igraph:erdos.renyi.game()
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Phase transition

Consider Gn,p as a function of p
• p = 0, empty graph
• p = 1, complete (full) graph
• There are exist critical pc:

• when p < pc, (⟨k⟩ < 1) there is no components with more than
O(ln n) nodes, largest component is a tree

• when p = pc, (⟨k⟩ = 1) the largest component has O(n2/3)
nodes

• when p > pc, (⟨k⟩ > 1) gigantic component has all O(n) nodes

Critical value: ⟨k⟩ = pcn = 1- on average one neighbor for a node
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Phase transition

The size of largest connected component

Critical value: ⟨k⟩ = pcn = 1- on average one neighbor for a node
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Random graph

Node degree distribution (Poisson distribution):

P(ki = k) =
λke−λ

k!
, λ = pn = ⟨k⟩
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Graph diameter

• G(n, p) is locally tree-like (GCC) (no loops; low clustering
coefficient)

• on average, the number of nodes d steps away from a node
⟨k⟩d

• in GCC, around pc , ⟨k⟩d ∼ n,

d ∼ ln n
ln⟨k⟩

Lecture 3 Higher School of Economics April 26, 209 9 / 26



Clustering coefficient

• Clustering coefficient

C(k) =
#of links between NN

#max number of links NN
=

pk(k− 1)/2

k(k− 1)/2
= p

C = p =
⟨k⟩
n

• when n → ∞, C → 0
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Random graph model

• Node degree distribution function - Poisson:

P(k) =
λke−λ

k!
, λ = pn = ⟨k⟩

• Average path length:

⟨L⟩ ∼ log(N)/ log⟨k⟩

• Clustering coefficient:

C =
⟨k⟩
n
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Preferential attachment model

Barabasi and Albert, 1999
Dynamical growth model

• t = 0, n0 nodes
• growth: on every step add a node withm0 edges (m0 ≤ n0),
ki(i) = m0

• Preferential attachment: probability of linking to existing node
is proportional to the node degree ki

Π(ki) =
ki∑
i ki

=
ki

2m0t

after t steps: n0 + t nodes,m0t edges
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Preferential attachment model

Barabasi, 1999
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Preferential attachement

ki(t) = m0

(
t
i

)1/2
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Preferential attachement
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Preferential attachement

Node degree distribution:

P(ki = k) =
2m2

0

k3
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Preferential attachement

Preferential attachment vs random graph
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Preferential attachment model

m0 = 1 m0 = 2 m0 = 3

igraph: barabasi.game()
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Preferential attachment model

• Node degree distribution - power law):

P(k) =
2m2

0

k3

• Average path length :

⟨L⟩ ∼ log(N)/ log(log(N))

• Clustering coefficient (numerical result):

C ∼ N−0.75
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Small world

Motivation: keep high clustering, get small diameter

Clustering coefficient C = 1/2
Graph diameter d = 8
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Small world

Watts and Strogatz, 1998

Single parameter model, interpolation between regular lattice and
random graph

• start with regular lattice with n nodes, k edges per vertex (node
degree), k << n

• randomly connect with other nodes with probability p, forms
pnk/2 ”long distance” connections from total of nk/2 edges

• p = 0 regular lattice, p = 1 random graph
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Small world

Watts, 1998
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Small world model

20% rewiring:
ave. path length = 3.58 → ave. path length = 2.32
clust. coeff = 0.49 → clust. coeff = 0.19
igraph:watts.strogatz.game()
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Small world model

• Node degree distribution function - Poisson like (numerical
result)

• Average path length (analytical result) :

⟨L⟩ ∼ log(N)

• Clustering coefficient
C = const
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Model comparison

Random BAmodel WS model Empirical networks

P(k) λke−λ

k! k−3 poisson like power law
C ⟨k⟩/N N−0.75 const large
⟨L⟩ log(N)

log(⟨k⟩)
log(N)

log log(N) log(N) small
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