

Mathematical models of networks Social Network Analysis. MAGoLEGO course. Lecture 3

Leonid Zhukov

lzhukov@hse.ru www.leonidzhukov.net/hse/2019/sna

National Research University Higher School of Economics School of Data Analysis and Artificial Intelligence, Department of Computer Science

Network models

network features:

- Power-law (heavy-tailed) degree distribution
- Small average distance (graph diameter)
- Large clustering coefficient (transitivity)
- Giant connected component

Generative models:

- Random graph model (Erdos & Renyi, 1959)
- Preferential attachement model (Barabasi & Albert, 1999)
- Small world model (Watts & Strogatz, 1998)

top:
$$n = 12$$
, $p = 1/6$

bottom: n = 100, p = 0.03

Graph $G\{E, V\}$, nodes n = |V|, edges m = |E| Erdos and Renyi, 1959.

• $G_{n,p}$ - each pair out of $N = \frac{n(n-1)}{2}$ is connected with probability p, number of edges m - random number

$$\langle m \rangle = p \frac{n(n-1)}{2}$$

$$\langle k \rangle = \frac{1}{n} \sum_{i} k_{i} = \frac{2\langle m \rangle}{n} = p (n-1) \approx pn$$

$$\rho = \frac{\langle m \rangle}{n(n-1)/2} = p$$

Structural changes happens when increasing *p* igraph:erdos.renyi.game()

Phase transition

Consider $G_{n,p}$ as a function of p

- p = 0, empty graph
- p = 1, complete (full) graph
- There are exist critical p_c :
 - when $p < p_{cr}$ ($\langle k \rangle < 1$) there is no components with more than $O(\ln n)$ nodes, largest component is a tree
 - when $p = p_c$, $(\langle k \rangle = 1)$ the largest component has $O(n^{2/3})$ nodes
 - when $p > p_{cr}(\langle k \rangle > 1)$ gigantic component has all O(n) nodes

Critical value: $\langle k \rangle = p_c n = 1$ - on average one neighbor for a node

Phase transition

The size of largest connected component

Critical value: $\langle k \rangle = p_c n = 1$ - on average one neighbor for a node

Random graph

Node degree distribution (Poisson distribution):

$$P(k_i = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad \lambda = pn = \langle k \rangle$$

Graph diameter

 G(n,p) is locally tree-like (GCC) (no loops; low clustering coefficient)

- on average, the number of nodes d steps away from a node $\langle k \rangle^d$
- in GCC, around p_c , $\langle k \rangle^d \sim n$,

$$d \sim \frac{\ln n}{\ln \langle k \rangle}$$

Clustering coefficient

Clustering coefficient

$$C(k) = \frac{\text{\#of links between NN}}{\text{\#max number of links NN}} = \frac{pk(k-1)/2}{k(k-1)/2} = p$$

$$C = p = \frac{\langle k \rangle}{n}$$

• when $n \to \infty$, $C \to 0$

• Node degree distribution function - Poisson:

$$P(k) = \frac{\lambda^k e^{-\lambda}}{k!}, \ \lambda = pn = \langle k \rangle$$

Average path length:

$$\langle L \rangle \sim \log(N) / \log\langle k \rangle$$

Clustering coefficient:

$$C=\frac{\langle k \rangle}{n}$$

Preferential attachment model

Barabasi and Albert, 1999 Dynamical growth model

- t = 0, n_0 nodes
- growth: on every step add a node with m_0 edges ($m_0 \le n_0$), $k_i(i) = m_0$
- Preferential attachment: probability of linking to existing node is proportional to the node degree k_i

$$\Pi(k_i) = \frac{k_i}{\sum_i k_i} = \frac{k_i}{2m_0 t}$$

after t steps: $n_0 + t$ nodes, $m_0 t$ edges

Preferential attachment model

Barabasi, 1999

Node degree k as function of time t

$$k_i(t) = m_0 \left(\frac{t}{i}\right)^{1/2}$$

Node degree distribution:

$$P(k_i = k) = \frac{2m_0^2}{k^3}$$

Preferential attachment vs random graph

Preferential attachment model

igraph: barabasi.game()

Preferential attachment model

• Node degree distribution - power law):

$$P(k) = \frac{2m_0^2}{k^3}$$

Average path length:

$$\langle L \rangle \sim \log(N) / \log(\log(N))$$

• Clustering coefficient (numerical result):

$$C \sim N^{-0.75}$$

Small world

Motivation: keep high clustering, get small diameter

Clustering coefficient C=1/2 Graph diameter d=8

Small world

Watts and Strogatz, 1998

Single parameter model, interpolation between regular lattice and random graph

- start with regular lattice with n nodes, k edges per vertex (node degree), k << n
- randomly connect with other nodes with probability p, forms pnk/2 "long distance" connections from total of nk/2 edges
- p = 0 regular lattice, p = 1 random graph

Small world

Watts, 1998

Small world model

20% rewiring: ave. path length = 3.58 \rightarrow ave. path length = 2.32 clust. coeff = 0.49 \rightarrow clust. coeff = 0.19 igraph:watts.strogatz.game()

Small world model

- Node degree distribution function Poisson like (numerical result)
- Average path length (analytical result):

$$\langle L \rangle \sim \log(N)$$

Clustering coefficient

$$C = const$$

Model comparison

	Random	BA model	WS model	Empirical networks
P(k)	$\frac{\lambda^k e^{-\lambda}}{k!}$	k^{-3}	poisson like	power law
C	$\langle k \rangle / N$	$N^{-0.75}$	const	large
$\langle L \rangle$	$\frac{\log(N)}{\log(\langle k \rangle)}$	$\frac{\log(N)}{\log\log(N)}$	log(N)	small

References

- On random graphs I, P. Erdos and A. Renyi, Publicationes Mathematicae 6, 290–297 (1959).
- On the evolution of random graphs, P. Erdos and A. Renyi, Publication of the Mathematical Institute of the Hungarian Academy of Sciences, 17-61 (1960)
- Collective dynamics of small-world networks. Duncan J. Watts and Steven H. Strogatz. Nature 393 (6684): 440-442, 1998
- Emergence of Scaling in Random Networks, A.L. Barabasi and R. Albert, Science 286, 509-512, 1999