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Network models

network features:
® Power-law (heavy-tailed) degree distribution
® Small average distance (graph diameter)
e Large clustering coefficient (transitivity)
® Giant connected component

Generative models:
® Random graph model (Erdos & Renyi, 1959)
e Preferential attachement model (Barabasi & Albert, 1999)
® Small world model (Watts & Strogatz, 1998)
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Random graph model

top:n=12,p=1/6 bottom: n = 100, p = 0.03

Lecture 3 Higher School of Economics April 26,209



Random graph model

Graph G{E, V}, nodes n = |V|, edges m = |E|
Erdos and Renyi, 1959.

® Gpp -each pairoutof N = @ is connected with probability

p,
number of edges m - random number

(m)
n(n—1)/2
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Random graph model

p <Ppc P = Pc P> Ppc
Structural changes happens when increasing p

igraph:erdos.renyi.game()

Lecture 3 Higher School of Economics April 26, 209 5/26



Phase transition

Consider Gy as a function of p
® p =0, empty graph
e p = 1, complete (full) graph
® There are exist critical p.:

® whenp < p, ({(k) < 1) there is no components with more than
O(In n) nodes, largest component is a tree

* whenp = p,, ((k) = 1) the largest component has O(n?/3)
nodes

® whenp > p,, ({(k) > 1) gigantic component has all O(n) nodes

Critical value: (k) = p.n = 1- on average one neighbor for a node
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Phase transition

The size of largest connected component

Critical value: (k) = p.n = 1- on average one neighbor for a node
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Random graph

Random graph model
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Graph diameter

® G(n,p) is locally tree-like (GCC) (no loops; low clustering
coefficient)

® on average, the number of nodes d steps away from a node
(k)¢
® in GCC, around p., (k)4 ~ n,
Inn
d~ ——
In(k)
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Clustering coefficient

e (Clustering coefficient

#of links between NN pk(k—1)/2

Clk) = #max number of links NN~ k(k—1)/2

® whenn — o0, C—0
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Random graph model

® Node degree distribution function - Poisson:

k=2

P(k) = 0 A =pn = (k)

® Average path length:
(L) ~log(N)/log(k)

e (Clustering coefficient:
n
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Preferential attachment model

Barabasi and Albert, 1999
Dynamical growth model

® t =0, ngnodes

e growth: on every step add a node with my edges (mgy < ng),
k,'(i) = My

e Preferential attachment: probability of linking to existing node
is proportional to the node degree k;

ki ki

— I g
H(kl) o Zi ki 2mgt

after t steps: ng + t nodes, myt edges
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Preferential attachment model

Scale-Free Model

t=1 t=2
. e
e 8 e
o =5 o t=6

Barabasi, 1999
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Preferential attachement

Node degree k as function of time t
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k(1) = mo (;)1/2
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Preferential attachement
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Preferential attachement

Node degree distribution

34 ['m random
% m BA
@
S
4
z o
T o
54
o
=
0 5 10 15 20 25 30

2
:F

Lecture 3 Higher School of Economics April 26, 209 16/26



Preferential attachement

Preferential attachment vs random graph
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Preferential attachment model

igraph: barabasi.game()
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Preferential attachment model

® Node degree distribution - power law):

P(K) = =5

® Average path length :
(L) ~ log(N)/log(log(N))
¢ Clustering coefficient (numerical result):

C~ N—0.75
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Small world

Motivation: keep high clustering, get small diameter
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Clustering coefficient C = 1/2
Graph diameterd = 8
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Small world

Watts and Strogatz, 1998

Single parameter model, interpolation between regular lattice and
random graph

e start with regular lattice with n nodes, k edges per vertex (node
degree), k << n

e randomly connect with other nodes with probability p, forms
pnk/2 "long distance” connections from total of nk/2 edges

e p = O regular lattice, p = 1 random graph
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Small world

Regular

Increasing randomness

Watts, 1998
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Small world model
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20% rewiring:
ave. pathlength=3.58 — ave. path length =2.32

clust. coeff = 0.49 — clust. coeff =0.19
igraph:watts.strogatz.game()
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Small world model

® Node degree distribution function - Poisson like (numerical

result)
® Average path length (analytical result) :
(L) ~log(N)
e (Clustering coefficient
C = const
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Model comparison

| Random | BAmodel | WS model | Empirical networks

P(k) )\kZ!_A k=3 poisson like power law
C (k)/N N—075 const large
log(N log(N
{L) Io(;g(((kg) o5 E)(g()N) log(N) small
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