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Centrality

Which vertices are important?

image from M.Grandjean, 2014
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Centrality Measures

Determine the most ”important” or ”prominent” actors in the
network based on actor location.

Marriage alliances among leading Florentine families 15th century.
Padgett, 1993
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Three graphs

Star graph Circle graph Line Graph
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Degree centrality

Degree centrality: number of nearest neighbors

CD(i) = k(i) =
∑
j

Aij =
∑
j

Aji

Normalized degree centrality

C∗D(i) =
1

n− 1
CD(i) =

k(i)
n− 1

High centrality degree -direct contact with many other actors
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Closeness centrality

Closeness centrality: how close an actor to all the other actors in
network

CC(i) =
1∑

j d(i, j)

Normalized closeness centrality

C∗C(i) = (n− 1)CC(i) =
n− 1∑
j d(i, j)

High closeness centrality - short communication path to others,
minimal number of steps to reach others
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Betweenness centrality

Betweenness centrality: number of shortest paths going through
the actor σst(i)

CB(i) =
∑
s̸=t ̸=i

σst(i)
σst

Normalized betweenness centrality

C∗B(i) =
2

(n− 1)(n− 2)
CB(i) =

2

(n− 1)(n− 2)

∑
s ̸=t ̸=i

σst(i)
σst

Hight betweenness centrality - vertex lies on many shortest paths
Probability that a communication from s to twill go through i

Linton Freeman, 1977
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Eigenvector centrality

Importance of a node depends on the importance of its neighbors
(recursive definition)

vi ←
∑
j

Aijvj

vi =
1

λ

∑
j

Aijvj

Av = λv

Select an eigenvector associated with largest eigenvalue λ = λ1,
v = v1

Phillip Bonacich, 1972.Lecture 4 Higher School of Economics May 17, 2019 8 / 1



Centrality examples

Closeness centrality

igraph:closeness()

from www.activenetworks.net
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Centrality examples

Betweenness centrality

igraph:betweenness()

from www.activenetworks.net
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Centrality examples

Eigenvector centrality

igraph:evcent()

from www.activenetworks.net
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Centrality examples

• A) Degree centrality
• B) Closeness centrality
• C) Betweenness

centrality
• D) Eigenvector centrality

from Claudio Rocchini
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Centralization

Centralization (network measure) - how central the most central
node in the network in relation to all other nodes.

Cx =
∑N

i [Cx(p∗)− Cx(pi)]

max
∑N

i [Cx(p∗)− Cx(pi)]

Cx - one of the centrality measures
p∗ - node with the largest centrality value
max - is taken over all graphs with the same number of nodes (for
degree, closeness and betweenness the most centralized structure
is the star graph)

igraph: centralization.degree(), centralization.closeness(), centralization.betweenness(),

centralization.evcent()

Linton Freeman, 1979
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Directional relations

Directed graph: distinguish between choices made (outgoing
edges) and choices received (incoming edges)

sending - receiving
export - import
cite papers - being cited
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Centrality measures

All based on outgoing edges
• Degree centrality (normalized):

C∗D(i) =
kout(i)
n− 1

• Closeness centrality (normalized):

C∗C(i) =
n− 1∑
j d(i, j)

• **Betweenness centrality (normalized):

C∗B(i) =
1

(n− 1)(n− 2)

∑
s ̸=t̸=i

σst(i)
σst
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Web as a graph

• Hyperlinks - implicit endorsements

• Web graph - graph of endorsements (sometimes reciprocal)
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PageRank

”PageRank can be thought of as a model of user behavior. We assume
there is a ”random surfer” who is given a web page at random and keeps
clicking on links, never hitting ”back” but eventually gets bored and starts
on another random page. The probability that the random surfer visits a
page is its PageRank.”

Sergey Brin and Larry Page, 1998
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Random walk

• Random walk on graph

pt+1
i =

∑
j∈N(i)

ptj
doutj

=
∑
j

Aji
doutj

pj

pt+1 = PTpt

P = D−1A, Dii = diag{douti }

• with teleportation

pt+1 = αPTpt + (1− α)v

Perron-Frobenius Theorem guarantees existence and uniqueness of
the solution limt→∞ p = π

π = αPTπ + (1− α)v
Lecture 4 Higher School of Economics May 17, 2019 18 / 1



PageRank

igraph: page.rank()
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PageRank beyond the Web
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Hubs and Authorities (HITS)

Citation networks. Reviews vs original research (authoritative)
papers
• authorities, contain useful information, ai
• hubs, contains links to authorities, hi

Mutual recursion

• Good authorities referred by
good hubs

ai ←
∑
j

Ajihj

• Good hubs point to good
authorities

hi ←
∑
j

Aijaj

Jon Kleinberg, 1999
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HITS

System of linear equations

a = αATh
h = βAa

Symmetric eigenvalue problem

(ATA)a = λa
(AAT)h = λh

where eigenvalue λ = (αβ)−1
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Hubs and Authorities

Hubs Authorities

igraph: hub.score(), authority.score()
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Florentines families
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