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Centrality

Which vertices are important?

image from M.Grandjean, 2014
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Centrality Measures

Determine the most "important” or "prominent” actors in the
network based on actor location.
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Marriage alliances among leading Florentine families 15th century.
Padgett, 1993

Lecture 4 Higher School of Economics May 17,2019 3/1



Three graphs
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Star graph Circle graph Line Graph
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Degree centrality

Degree centrality: number of nearest neighbors
Co(i) = k() = _Aj = Aj
J J

Normalized degree centrality

1 k(i)

Coli) = = Coli) = -

High centrality degree -direct contact with many other actors
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Closeness centrality

Closeness centrality: how close an actor to all the other actors in

network )
CC )= =<+~
=5 i)
Normalized closeness centrality
n—1
Ce(i)=(n—1)Cc(i) = =——=

High closeness centrality - short communication path to others,
minimal number of steps to reach others
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Betweenness centrality

Betweenness centrality: number of shortest paths going through

the actor og(i) ‘
Gl = ostli)

sttt Ot
Normalized betweenness centrality

L 92 N 2 ost(i)
Cg(i) = mCB(/) “(n—=1)(n-2) s;ﬂ Ost

Hight betweenness centrality - vertex lies on many shortest paths
Probability that a communication from s to t will go through i
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Eigenvector centrality

Importance of a node depends on the importance of its neighbors
(recursive definition)

Vi DA R > o
j |

Vi = %ZAUV/ ,Adtm ‘ ‘ Linda
J

Av = \v e

Select an eigenvector associated with largest eigenvalue \ = )\,
V=V
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Centrality examples

Closeness centrality
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igraph:closeness()
from www.activenetworks.net
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Centrality examples

Betweenness centrality
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igraph:betweenness()

from www.activenetworks.net
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Centrality examples

Eigenvector centrality
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igraph:evcent()

from www.activenetworks.net
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Centrality examples

A) Degree centrality

B) Closeness centrality

C) Betweenness
centrality

D) Eigenvector centrality

from Claudio Rocchini
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Centralization

Centralization (network measure) - how central the most central
node in the network in relation to all other nodes.

= Zf\l[cx(p*) - CX(pi)]
max E{V[Cx(p*) - CX(pI)]

Cx - one of the centrality measures

p« - node with the largest centrality value

max - is taken over all graphs with the same number of nodes (for
degree, closeness and betweenness the most centralized structure
is the star graph)

igraph: centralization.degree(), centralization.closeness(), centralization.betweenness(),

centralization.evcent()

Linton Freeman, 1979
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Directional relations

Directed graph: distinguish between choices made (outgoing
edges) and choices received (incoming edges)

sending - receiving
export - import
cite papers - being cited
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Centrality measures

All based on outgoing edges
® Degree centrality (normalized):
kOUt(i

Gyli) = 0

® Closeness centrality (normalized):

. n—1
)= dip

e **Betweenness centrality (normalized):

“in 1 ost(i)
CB(I) - (n — 1)(’7 — 2) S;ﬂ Ot
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Web as a graph

e Hyperlinks - implicit endorsements

>

hyperlink e -

Il =

Il's

® Web graph - graph of endorsements (sometimes reciprocal)
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PageRank

"PageRank can be thought of as a model of user behavior. We assume
there is a “random surfer” who is given a web page at random and keeps
clicking on links, never hitting "back” but eventually gets bored and starts
on another random page. The probability that the random surfer visits a
page is its PageRank.”

Sergey Brin and Larry Page, 1998
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Random walk

e Random walk on graph

Aii
le—l Z dout Z dojl,llt pj °
JEN() f 0

pt+1 _ PTpt ° 11 °

P=D"'A, D; = diag{d®'}

e with teleportation
ptt = aP’p' 4 (1 — a)v

Perron-Frobenius Theorem guarantees existence and uniqueness of
the solution lim;_,p =

T
m=oP' 7+ (1 —a)Vv
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PageRank
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igraph: page.rank()
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PageRank beyond the Web

GeneRank
ProteinRank
FoodRank
SportsRank
HostRank
TrustRank
BadRank
ObjectRank
[temRank
10. ArticleRank
11. BookRank
12. FutureRank

Lecture 4
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13. TimedPageRank
14. SocialPageRank
15. DiffusionRank
16. ImpressionRank
17. TweetRank

18. TwitterRank

19. ReversePageRank
20. PageTrust

21. PopRank

22. CiteRank

23. FactRank

24. InvestorRank

Higher School of Economics

25.
26.
27.
28.
29.
30.
. ChemicalRank
32.
33.
34.

ImageRank
VisualRank
QueryRank
BookmarkRank
StoryRank
PerturbationRank

RoadRank

PaperRank
Etc...
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Hubs and Authorities (HITS)

Citation networks. Reviews vs original research (authoritative)

papers
e authorities, contain useful information, a;
® hubs, contains links to authorities, h;

Mutual recursion

® Good authorities referred by

good hubs O———0
a; < ZAjihj O
J
O

® Good hubs point to good
authorities

hi — Z A,‘jaj

Lecture 4 Higher School of Economics May 17,2019 VAV



System of linear equations

a = oA’h
h = pJAa

Symmetric eigenvalue problem

where eigenvalue A = (a3)~!
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Hubs and Authorities

Hubs Authorities
o
e
@ Q (<]
088000 PR go
o 00': 5 %
OO OO le]
O e 6 O o 60
Q ) o D0 ~ge
@ @ @ @ o)
o%¢ o Q% g
® ®¢e 2
® ®
g B NN
9] g
e oio o o _— .
o
Dag © @ ) )
¢ 9 ¢ 0 OOO
5] "
020000

igraph: hub.score(), authority.score()
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Florentines families

ecture 4

Marriage Network

BetweennessCentrality

‘ClosenessCentrality

RadialityCentrality

o—0

Ridold
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