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Network communities

Connected and undirected graphs
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Network communities

What makes a community (cohesive subgroup):

e Mutuality of ties. Everyone in the group has ties (edges) to one
another

e Compactness. Closeness or reachability of group members in
small number of steps, not necessarily adjacency

e Density of edges. High frequency of ties within the group

e Separation. Higher frequency of ties among group members
compared to non-members

Wasserman and Faust
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Community types

Community types:
* Non-overlapping
® Qverlapping

image from W. Liu, 2014
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Network communities

Definition
Network communities are groups of vertices such that vertices inside
the group connected with many more edges than between groups.

® Will consider non-overlapping communities, each node
assigned only to one community
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Community density

Graph G(V,E),n = |V|, m = |E|
e Community - set of nodes S
ns-number of nodesin S, m; - number of edgesin S

® Graph density
m
P~ hin—1)/2
® community internal density
ms
0int(C) = ————————=
in(C) ns(ns —1)/2
e external edges density
m

e community (cluster): dint > p, ext < p
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Graph cuts

Graph cut is a partition of the vertices of a graph G(E, V) into two
disjoint subsets: V= V; + V,

Q= CUt(Vl, VQ) = E €jj
ieVy,jeVa
image from Fortunato 2016
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Modularity

e Compare fraction of edges within the cluster to expected
fraction in random graph with identical degree sequence

1
Q= Z(ms — E(m;))

me (ko
Q= — = | ==
m 2m
u
my, - number of internal edges in a community u,
ky - sum of node degrees within a community

® Modularity score

® Modularity score range Q € [—1/2, 1), single community
Q=0
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Modularity

SINGLE COMMUNITY
OPTIMAL PARTITION

M=0
; M=0.41 ;

NEGATIVE MODULARITY
M= -012

SUBOPTIMAL PARTITION
M=0.22

® The higher the modularity score - the better are communities

image from A.L. Barabasi 2016
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Community detection

e Combinatorial optimization problem:
- optimization criterion (density, graph cut, modularity score)
- optimization method

Exact solution NP-hard
(bi-partition: n = ny + ng, n!/(n1!ns!) combinations)

Solved by greedy, approximate algorithms or heuristics

Recursive top-down 2-way partition, multiway partition
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Multiway partitioning
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Recursive partitioning

Wiy
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Edge betweenness

Focus on edges that connect communities.
Edge betweenness -number of shortest paths o (e) going through

edgee
Cs(e) = Z ase(e)

Ost
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Edge betweenness algorithm

Newman-Girvan, 2004

Algorithm: Edge Betweenness
Input: graph G(V,E)
Output: Dendrogram/communities

repeat
For all e € E compute edge betweenness Cz(e);

remove edge e; with largest Cg(e;) ;
until edges left;

If bi-partition, then stop when graph splits in two components
(check for connectedness)
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Edge betweenness

Hierarchical algorithm, dendrogram
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Edge betweenness

Zachary karate club
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Edge betweenness

Zachary karate club
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Edge betweenness

Zachary karate club
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Edge betweenness

Modularity score
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modulaity
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#of clusters

igraph:modularity()
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Edge betweenness

best: clusters = 6, modularity = 0.345
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Edge betweenness

Zachary karate club
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igraph:dendPlot()
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Fast community unfolding

V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, 2008 "The
Louvain method”

® Heuristic method for greedy modularity optimization
® Find partitions with high modularity
® Multi-level (multi-resolution) hierarchical scheme

® Scalable
Modularity:
! kik; B my (ki)
Q= %%: (Au - %> 6(ci, g) = zu: (? (ﬁ)

V. Blondel et.al., 2008
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Fast community unfolding

Multi-resolution scalable method

2 mIn mobile phone network
V. Blondel et.al., 2008
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Fast community unfolding algorithm

Input: Graph G(V,E)
Output: Communities
Assign every node to its own community;

repeat

repeat
For every node evaluate modularity gain from removing

node from its community and placing it in the
community of its neighbor;

Place node in the community maximizing modularity
gain;
until no more improvement (local max of modularity);
Nodes from communities merged into “super nodes” ;
Weight on the links added up

NO MMoere cndnde max maoad '
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Fast community unfolding

12
Modularity Community

OptimizatV Aggregation

7 1

2nd pass 26 24

— Q@3 0

V. Blondel et.al., 2008
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Fast community unfolding

clusters = 4, modularity = 0.445
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Fast community unfolding

ondel etal. 2008
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Community detection algorithms

Author Ref. Label Order
Eckmann & Moses (Eckmann and Moses, 2002) EM O(m(k?))
Zhou & Lipowsky (Zhou and Lipowsky, 2004) ZL o(n®)

Latapy & Pons (Latapy and Pons, 2005) LP o(n®)

Clauset et al. (Clauset et al., 2004) NF O(nlog?n)
Newman & Girvan (Newman and Girvan, 2004) NG O(nm?)
Girvan & Newman (Girvan and Newman, 2002) GN O(n*m)

Guimerd et al. (Guimera and Amaral, 2005; Guimera et al., 2004)| SA  |parameter dependent

Duch & Arenas (Duch and Arenas, 2005) DA O(n?logn)

Fortunato et al. (Fortunato et al., 2004) FLM O(m®n)

Radicchi et al. (Radicchi et al., 2004) RCCLP O(m*/n?)

Donetti & Mufioz (Donetti and Mufioz, 2004, 2005) DM/DMN o(n®)

Bagrow & Bollt (Bagrow and Bollt, 2005) BB o(n®)

Capocci et al. (Capocci et al., 2005) csce O(n?)

Wau & Huberman (Wu and Huberman, 2004) WH O(n+m)
Palla et al. (Palla et al., 2005) PK O(exp(n))
Reichardt & Bornholdt (Reichardt and Bornholdt, 2004) RB_|parameter dependent

Author Ref. Label Order
Girvan & Newman |(Girvan and Newman, 2002; Newman and Girvan, 2004) GN O(nm?)
Clauset et al. (Clauset et al., 2004) Clauset et al. O(nlog?n)
Blondel et al. (Blondel et al., 2008) Blondel et al. O(m)
Guimerd et al. (Guimera and Amaral, 2005; Guimera ef al, 2004) | Sim. Ann. | parameter dependent
Radicchi et al. (Radicchi et al., 2004) Radicchi et al. O(m* /n?)
Palla et al. (Palla et al., 2005) Cfinder Ofexp(n))

‘Van Dongen (Dongen, 2000a) MCL O(nk?), k < n parameter
Rosvall & Bergstrom (Rosvall and Bergstrom, 2007) Infomod | parameter dependent
Rosvall & Bergstrom (Rosvall and Bergstrom, 2008) Infomap O(m)

Donetti & Mufioz (Donetti and Mu’ioz, 2004, 2005) DM o)
Newman & Leicht (Newman and Leicht, 2007) EM parameter dependent
Ronhovde & Nussinov (Ronhovde and Nussinov, 2009) RN O(m’logn), B~ 13
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