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Global contagion

Outbreak of SARS in 2003, > 8000 cases, 10% fatality rate, 37
countries

Simulated model:
gray lines - passenger flow, red symbols epidemics location

D. Brockmann, D. Helbing, 2013

Lecture 7 Higher School of Economics May 31,2019 2/29



Flu contagion
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Infected - red, friends of infected - yellow

N. Christakis, J. Fowler, 2010
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Network epidemic model

Given a network G of potential contacts

Three states model: susceptible, infected, recovered states
Probabilistic model (state of a node):

si(t) - probability that at t node i is susceptible

xi(t) - probability that at t node i is infected

ri(t) - probability that at t node i is recovered

Model parameters:

B - infection rate (probably to get infected on a contact in time
ot)

~ - recovery rate (probability to recover in a unit time §t)
connected component - all nodes reachable

network is undirected (matrix A is symmetric)

if graph complete - fully mixing model

Based upon models from mathematical epidemiology, W.O.
Kermack and McKendrick, 1927
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Probabilistic model

Two processes:
® Node infection:

—)

Pint & Bsi(t) Y x(1)dt
JEN (i)

K=K

Prec = ’yX,'(t)(Sl'

® Node recovery:
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SI model

Sl Model
S—1

Probabilities that node i: s;(t) - susceptible, x;(t) -infected at t

xi(t) + si(t) = 1

[ - infection rate, probability to get infected in a unit time
Xi(t + 6t) = xi(t) + Bsi(t) > _ Apxi(1)dt
J
e infection equations
d):,(tt) = Bsi(t) ZAinj(t)
j

X,'(t) + S,'(t) =1
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SI model

SI Model
S—1

1. Every node at any time step is in one state {S, /}
2. Initialize c nodes in state |

3. On each time step each I node has a probability 5 to infect its
nearest neighbors (NN), S — /

Model dynamics:

iy

I+S = 2/
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SI model

B8=05
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SI model

B8=05
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SI model
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SI model
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SI model

B8=05
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SI model

B8=05
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SI model

Sl infection

Number of nodes

i
Time
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SI model

(1)

1. growth rate of infections depends on Ay

2. All nodes in connected component get infected t — oo
X,'(t) —1

image from M. Newman, 2010
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SIS model simulations

SIS Model
S—I1—S

Every node at any time step is in one state {S, /}
Initialize ¢ nodes in state /
Each node stays infected 7., = 1/~ time steps

HwnN o=

On each time step each I node has a probability 3 to infect its
nearest neighbors (NN), S — /

5. After 7, time steps node recovers, | — S

Model dynamics:

1+s 5 9
I X5
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SIS model

6=0571=2
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SIS model
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SIS model

6=0571=2
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SIS model

6=0571=2
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SIS model
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SIS model

6=0571=2
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SIS model
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SIS model

SIS infection

Number of nodes

Time
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SIS model

B=027=2
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SIS model

B=027=2
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SIS model

B=027=2
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SIS model

B=027=2
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SIS model

B=027=2
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SIS model

B=027=2
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SIS model

B=027=2
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SIS model

SIS infection

\//—/

Number of nodes
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SIS model

Epidemic threshold Rg:

° ifg < Rg - infection dies over time

00

10

° if% > Ry - infection

08
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survives and becomes epidemic
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SIR model simulation

SIR Model
S—I1—R

Every node at any time step is in one state {S, /, R}
Initialize c nodes in state /
Each node stays infected 7., = 1/~ time steps

>N =

On each time step each I node has a prabability /5 to infect its
nearest neighbours (NN), S — /

5. After 7, time steps node recovers, | — R
6. Nodes R do not participate in further infection propagation

Model dynamics:

I+s 5 oo
/ 2 R
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SIR model

6=0571=2
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SIR model
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SIR model
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SIR model

6=0571=2
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SIR model
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SIR model
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SIR model
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SIR model

SIR infection

Number of nodes

Time
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SIR model

B=027=2
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SIR model

B=027T=2
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SIR model

B=027=2
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SIR model

B=027=2
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SIR model

B=027=2
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SIR model

B=027=2
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SIR model

SIR infection

Number of nodes

Time
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SIR model

Epidemic threshold Rg:
% > Ry - infection survives and becomes epidemic

propartio: of population
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SIR model

Epidemic threshold Rg:
% < Ry - infection dies over time

propartio: of population
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5 Networks, SIR

Networks: 1) random, 2) lattice, 3) small world, 4) spatial, 5)
scale-free
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5 Networks, SIR
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Networks: 1) random, 2) lattice, 3) small world, 4) spatial, 5)
scale-free

Keeling et al, 2005
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Social contagion

Social contagion phenomena refer to various processes that
depend on the individual propensity to adopt and diffuse
knowledge, ideas, information.

e Similar to epidemiological models:
- "susceptible” - an individual who has not learned new
information
- "infected” - the spreader of the information
- "recovered” - aware of information, but no longer spreading it

® Two main questions:
- if the rumor reaches high number of individuals
- rate of infection spread
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Mem diffusion

Mem diffusion on Twitter

a #Japan
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