

# Spreading phenomena in networks Social Network Analysis. MAGoLEGO course. Lecture 7

#### Leonid Zhukov

lzhukov@hse.ru www.leonidzhukov.net/hse/2019/sna

National Research University Higher School of Economics School of Data Analysis and Artificial Intelligence, Department of Computer Science

# Global contagion



Outbreak of SARS in 2003, > 8000 cases, 10% fatality rate, 37 countries



Simulated model: gray lines - passenger flow, red symbols epidemics location

D. Brockmann, D. Helbing, 2013

## Flu contagion





Infected - red, friends of infected - yellow

N. Christakis, J. Fowler, 2010

## Network epidemic model



- Given a network **G** of potential contacts
- Three states model: susceptible, infected, recovered states
- Probabilistic model (state of a node):
  - $s_i(t)$  probability that at t node i is susceptible
  - $x_i(t)$  probability that at t node i is infected
  - $r_i(t)$  probability that at t node i is recovered
- Model parameters:
  - $\beta$  infection rate (probably to get infected on a contact in time  $\delta t$ )
  - $\gamma$  recovery rate (probability to recover in a unit time  $\delta t$ )
- connected component all nodes reachable
- network is undirected (matrix A is symmetric)
- if graph complete fully mixing model
- Based upon models from mathematical epidemiology, W.O. Kermack and McKendrick, 1927

#### Probabilistic model



#### Two processes:

Node infection:



Node recovery:



$$P_{rec} = \gamma x_i(t) \delta t$$



SI Model

$$S \longrightarrow I$$

• Probabilities that node *i*:  $s_i(t)$  - susceptible,  $x_i(t)$  -infected at t

$$x_i(t) + s_i(t) = 1$$

•  $\beta$  - infection rate, probability to get infected in a unit time

$$x_i(t + \delta t) = x_i(t) + \beta s_i(t) \sum_i A_{ij} x_j(t) \delta t$$

infection equations

$$\frac{dx_i(t)}{dt} = \beta s_i(t) \sum_j A_{ij} x_j(t)$$
$$x_i(t) + s_i(t) = 1$$



#### SI Model

$$S \longrightarrow I$$

- 1. Every node at any time step is in one state  $\{S, I\}$
- 2. Initialize c nodes in state I
- 3. On each time step each *I* node has a probability  $\beta$  to infect its nearest neighbors (NN),  $S \rightarrow I$

#### Model dynamics:

$$I + S \xrightarrow{\beta} 2I$$



$$\beta = 0.5$$











- 1. growth rate of infections depends on  $\lambda_1$
- 2. All nodes in connected component get infected  $t \to \infty$   $x_i(t) \to 1$

image from M. Newman, 2010

#### SIS model simulations



#### SIS Model

$$S \longrightarrow I \longrightarrow S$$

- 1. Every node at any time step is in one state  $\{S, I\}$
- 2. Initialize c nodes in state I
- 3. Each node stays infected  $au_{\gamma}=1/\gamma$  time steps
- 4. On each time step each *I* node has a probability  $\beta$  to infect its nearest neighbors (NN),  $S \rightarrow I$
- 5. After  $\tau_{\gamma}$  time steps node recovers,  $I \rightarrow S$

#### Model dynamics:

$$\begin{cases} I + S & \xrightarrow{\beta} & 2I \\ I & \xrightarrow{\gamma} & S \end{cases}$$



$$\beta = 0.5, \tau = 2$$





$$\beta = 0.5, \tau = 2$$





$$\beta=0.5, \tau=2$$





$$\beta=0.5, \tau=2$$





$$\beta=0.5, \tau=2$$





$$\beta=0.5, \tau=2$$





$$\beta = 0.5, \tau = 2$$









$$\beta=0.2, \tau=2$$





$$\beta=0.2, \tau=2$$





$$\beta = 0.2, \tau = 2$$





$$\beta=0.2, \tau=2$$









#### Epidemic threshold $R_0$ :

• if  $\frac{\beta}{\gamma} < R_0$  - infection dies over time



• if  $\frac{\beta}{\gamma} > R_0$  - infection survives and becomes epidemic



#### SIR model simulation



#### SIR Model

$$S \longrightarrow I \longrightarrow R$$

- 1. Every node at any time step is in one state  $\{S, I, R\}$
- 2. Initialize c nodes in state I
- 3. Each node stays infected  $au_{\gamma}=1/\gamma$  time steps
- 4. On each time step each *I* node has a prabability  $\beta$  to infect its nearest neighbours (NN),  $S \rightarrow I$
- 5. After  $\tau_{\gamma}$  time steps node recovers,  $I \to R$
- 6. Nodes R do not participate in further infection propagation

#### Model dynamics:

$$\begin{cases} I + S & \xrightarrow{\beta} & 2I \\ I & \xrightarrow{\gamma} & R \end{cases}$$



$$\beta = 0.5, \tau = 2$$





$$\beta=0.5, \tau=2$$





$$\beta=0.5, \tau=2$$





$$\beta = 0.5, \tau = 2$$





$$\beta=0.5, \tau=2$$





$$\beta=0.5, \tau=2$$





$$\beta = 0.5, \tau = 2$$









$$\beta = 0.2, \tau = 2$$





$$\beta = 0.2, \tau = 2$$





$$\beta = 0.2, \tau = 2$$





$$\beta = 0.2, \tau = 2$$





$$\beta=0.2, \tau=2$$





$$\beta = 0.2, \tau = 2$$









#### Epidemic threshold $R_0$ :

 $\frac{\beta}{\gamma} > R_0$  - infection survives and becomes epidemic





### Epidemic threshold $R_0$ :

$$rac{eta}{\gamma} < R_0$$
 - infection dies over time



## 5 Networks, SIR





Networks: 1) random, 2) lattice, 3) small world, 4) spatial, 5) scale-free

### 5 Networks, SIR





Networks: 1) random, 2) lattice, 3) small world, 4) spatial, 5) scale-free

Keeling et al, 2005

## Effective distance





# Social contagion



Social contagion phenomena refer to various processes that depend on the individual propensity to adopt and diffuse knowledge, ideas, information.

- Similar to epidemiological models:
  - "susceptible" an individual who has not learned new information
  - "infected" the spreader of the information
  - "recovered" aware of information, but no longer spreading it
- Two main questions:
  - if the rumor reaches high number of individuals
  - rate of infection spread

#### Mem diffusion



#### Mem diffusion on Twitter



#### References



- Epidemic outbreaks in complex heterogeneous networks. Y. Moreno, R. Pastor-Satorras, and A. Vespignani. Eur. Phys. J. B 26, 521-529, 2002.
- Networks and Epidemics Models. Matt. J. Keeling and Ken.T.D. Eames, J. R. Soc. Interfac, 2, 295-307, 2005
- Simulations of infections diseases on networks. G. Witten and G. Poulter. Computers in Biology and Medicine, Vol 37, No. 2, pp 195-205, 2007
- Dynamical processes on complex networks. A. Barrat, M. Barthelemy, A. Vespignani Eds., Cambridge University Press 2008
- Dynamics of rumor spreading in complex networks. Y. Moreno,
   M. Nekovee, A. Pacheco, Phys. Rev. E 69, 066130, 2004
- Theory of rumor spreading in complex social networks. M. Nekovee, Y. Moreno, G. Biaconi, M. Marsili, Physica A 374, pp 457, 470, 2007.