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Global contagion

Outbreak of SARS in 2003,> 8000 cases, 10% fatality rate, 37
countries

Simulated model:
gray lines - passenger flow, red symbols epidemics location

D. Brockmann, D. Helbing, 2013
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Flu contagion

Infected - red, friends of infected - yellow
N. Christakis, J. Fowler, 2010
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Network epidemic model

• Given a network G of potential contacts
• Three states model: susceptible, infected, recovered states
• Probabilistic model (state of a node):
si(t) - probability that at t node i is susceptible
xi(t) - probability that at t node i is infected
ri(t) - probability that at t node i is recovered

• Model parameters:
β - infection rate (probably to get infected on a contact in time
δt)
γ - recovery rate (probability to recover in a unit time δt)

• connected component - all nodes reachable
• network is undirected (matrix A is symmetric)
• if graph complete - fully mixing model
• Based upon models frommathematical epidemiology, W.O.
Kermack and McKendrick, 1927
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Probabilistic model

Two processes:
• Node infection:

Pinf ≈ βsi(t)
∑

j∈N (i)

xj(t)δt

• Node recovery:

Prec = γxi(t)δt
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SI model

• SI Model
S −→ I

• Probabilities that node i: si(t) - susceptible, xi(t) -infected at t

xi(t) + si(t) = 1

• β - infection rate, probability to get infected in a unit time

xi(t+ δt) = xi(t) + βsi(t)
∑
j

Aijxj(t)δt

• infection equations

dxi(t)
dt

= βsi(t)
∑
j

Aijxj(t)

xi(t) + si(t) = 1
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SI model

SI Model
S −→ I

1. Every node at any time step is in one state {S, I}
2. Initialize c nodes in state I

3. On each time step each I node has a probability β to infect its
nearest neighbors (NN), S → I

Model dynamics:

I+ S
β−→ 2I
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SI model

β = 0.5
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SI model
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SI model

1. growth rate of infections depends on λ1

2. All nodes in connected component get infected t → ∞
xi(t) → 1

image fromM. Newman, 2010
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SIS model simulations

SIS Model
S −→ I −→ S

1. Every node at any time step is in one state {S, I}
2. Initialize c nodes in state I

3. Each node stays infected τγ = 1/γ time steps

4. On each time step each I node has a probability β to infect its
nearest neighbors (NN), S → I

5. After τγ time steps node recovers, I → S

Model dynamics: {
I+ S

β−→ 2I
I

γ−→ S

Lecture 7 Higher School of Economics May 31, 2019 11 / 29



SIS model

β = 0.5, τ = 2
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SIS model
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SIS model

β = 0.2, τ = 2
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SIS model
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SIS model

Epidemic threshold R0:
• if β

γ < R0 - infection dies over time

• if β
γ > R0 - infection survives and becomes epidemic

In SIS model: R0 = 1
λ1
, Av1 = λ1v1
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SIR model simulation

SIR Model
S −→ I −→ R

1. Every node at any time step is in one state {S, I, R}
2. Initialize c nodes in state I

3. Each node stays infected τγ = 1/γ time steps

4. On each time step each I node has a prabability β to infect its
nearest neighbours (NN), S → I

5. After τγ time steps node recovers, I → R

6. Nodes R do not participate in further infection propagation

Model dynamics: {
I+ S

β−→ 2I
I

γ−→ R
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SIR model

β = 0.5, τ = 2
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SIR model
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SIR model
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SIR model

Lecture 7 Higher School of Economics May 31, 2019 21 / 29



SIR model

Epidemic threshold R0:
β
γ > R0 - infection survives and becomes epidemic
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SIR model

Epidemic threshold R0:
β
γ < R0 - infection dies over time
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5 Networks, SIR

Networks: 1) random, 2) lattice, 3) small world, 4) spatial, 5)
scale-free
image from Keeling et al, 2005
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Effective distance

J. Manitz, et.al. 2014, D. Brockman, D. Helbing, 2013Lecture 7 Higher School of Economics May 31, 2019 26 / 29



Social contagion

Social contagion phenomena refer to various processes that
depend on the individual propensity to adopt and diffuse
knowledge, ideas, information.

• Similar to epidemiological models:
- ”susceptible” - an individual who has not learned new
information
- ”infected” - the spreader of the information
- ”recovered” - aware of information, but no longer spreading it

• Twomain questions:
- if the rumor reaches high number of individuals
- rate of infection spread
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Mem diffusion

Mem diffusion on Twitter

L. Weng et.al, 2012
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