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Spreading process

Propagation process:

® |Information based models:
- ideas, knowledge
- virus and infection
- rumors, news

® Decision based models:
- adoption of innovation
- joining political protest
- purchase decision

Local individual decision rules will lead to very different global

results.
"microscopic” changes — "macroscopic” results
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Ryan-Gross study

Ryan-Gross study of hybrid seed corn delayed adoption (after first
exposure)
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Information effect vs adopting of innovation
Ryan and Gross, 1943
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Ryan-Gross study

Hybrid corn adoption
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Griliches, 1957
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Diffusion of innovation

Everett Rogers, "Diffusion of innovation” book, 1962
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Diffusion of innovation

What influences potential adopters:
¢ relative advantage of the innovation

compatibility with current ways of doing things

complexity of the innovation

triability - the ease of testing

observability of results

Some questions remain:
® how a new technology can take over?
* who different technologies coexist?
® what stops new technology propagation?

Everett Rogers,1962
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Network structure

From the population level to local structure
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Network coordination game

Local interaction game: Let u and v are players, and A and b are
possible strategies
Payoffs

e if uand v both adopt behavior A, each get payoffa > 0
e if uand v both adopt behavior B, each get payoff b > 0
e if uand v adopt opposite behavior, each get payoff 0

A B
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Threshold model

Network coordination game, direct-benefit effect

A B

A |aa | 0,0
v

B |0,0 | b,b

Node v to make decision A or B, p - portion of type A neighbors

to accept A:
a-p-d>b-(1—-p)-d
p>b/(a+b)
Threshold:
b
R
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Cascades

Cascade - sequence of changes of behavior, “chain reaction”

(c) After one step, two more nodes have
adopted

Lecture 8 Higher School of Economics June 7,2019 10/1



Cascade propagation

Leta = 3,b = 2,thresholdg =2/(2+3) =2/5
Start fromnodes 7,8: 1/3 < 2/5 < 1/2 < 2/3
Cascade size - number of nodes that changed the behavior

Complete cascade when every node changes the behavior
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Cascades and clusters

Group of nodes form a cluster of density p if every node in the set
has at least fraction p of its neighbors in the set

Both clusters of density p = 2/3. For cascade to get into cluster
qg<1l—p.
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Linear threshold model

Influence comes only from NN N(i) nodes, wj; influence i — j
Require ZJEN(,) wji < 1

Each node has a random acceptance threshold from 6; € [0, 1]
Activation: fraction of active nodes exceeds threshold

Z wji > 0;

active jeN(i)

Initial set of active nodes A,, iterative process with discrete
time steps
Progressive process, only nonactive — active
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Cascades in random networks

multiple seed nodes

t=0

(a) Empirical network; (b), (c) - randomized network
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Influence maximization problem

Initial set of active nodes A,

Cascade size o (A,) - expected number of active nodes when
propagation stops

® Find k-set of nodes A, that produces maximal cascade o (Ay)
k-set of “/maximum influence” nodes

NP-hard

D. Kempe, J. Kleinberg, E. Tardos, 2003, 2005
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Influence maximization

Greedy maximization algorithm:
Given: Graph and set size k
Output: Maximum influence set A
1. Select a node v; that maximizes the influence o (v;)
2. Fix vy and find v, such that maximizes o (vy, v2)
3. Repeat k times
4. Output maximum influence set: A = {vy, va...vx}

Isl IsUv| IT| |TUv|
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Influence maximization

Approximation algorithm

Algorithm: Greedy optimization
Input: Graph G(V,E), k
Output: Maxumum influence set S
SetS<«+ 0
fori=1:kdo
L select v = arg max,eps(a(SU{u}) — a(S))
S+ Su{v}
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Experimental results

Linear threshold model

network: collaboration graph 10,000 nodes, 53,000 edges

1200

active set size

10 15 20
target set size

Greedy algorithm finds a set S such that its influence set o(S) is
o(S) > (1 — 1)o(5*) from the true optimal (maximal) set o (5*)
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