

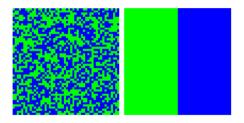
Spatial Models of Segregation Social Network Analysis. MAGoLEGO course. Lecture 8

Leonid Zhukov

lzhukov@hse.ru www.leonidzhukov.net/hse/2019/sna

National Research University Higher School of Economics School of Data Analysis and Artificial Intelligence, Department of Computer Science

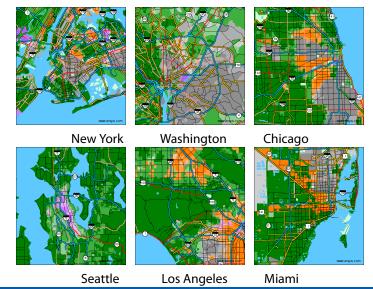
Spatial model of segregation



"Dynamic Models of Segregation", Thomas Schelling, 1971

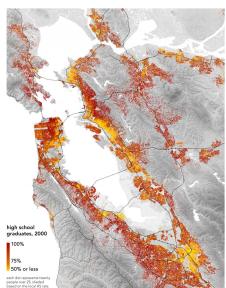
- Micro-motives and macro-behavior
- Personal preferences lead to collective actions
- Global patterns of spatial segregation from homophily at a local level
- Segregated race, ethnicity, native language, income
- Cities are strongly racially segregated. Are people that racists?
- Agent based modeling: agents, rules (dynamics), aggregation

Segregation

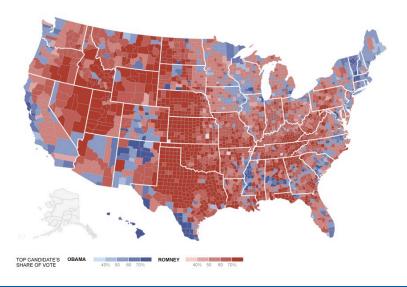


Integrated pattern Segregated pattern

Racial segregation

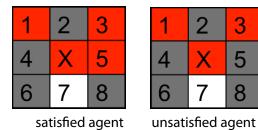


Bay area high school graduates



June 7, 2019

2012 US Presidential Elections Map



Schelling's model of segregation

- Population consists of 2 types of agents
- Agent reside in the cells of the grid (2-dimensional geography of a city), 8 neighbors
- Some cells contain agents, some unpopulated
- Every agent wants to have at least some fraction of agents (threshold) of his type as neighbor (satisfied agent)
- On every round every unsatisfied agent moves to a satisfactory empty cell.
- Continues until everyone is satisfied or can't move

• preference threshold $\lambda=3/7$

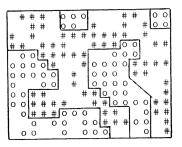
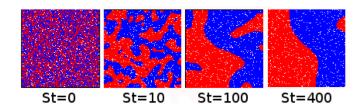
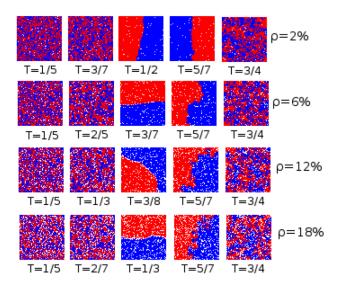



Fig. 7 Fig. 10

T. Schelling, 1971



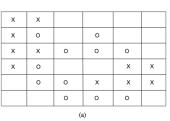
vacancy 5%, tolerance $\lambda=0.5$

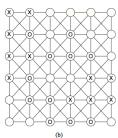
L. Gauvin et.al. 2009

• N - nodes, θ - fraction of occupied by A and B

$$n_A + n_B = \theta \cdot N$$

• Proportion of "unlike" nearest neighbors, $k_i = \#NN$


$$P_i = \left\{ \begin{array}{l} \# n_B/k_i, \text{ if } i \in A \\ \# n_A/k_i, \text{ if } i \in B \end{array} \right.$$


• Utility function, λ - sensitivity (tolerance threshold) level

$$u_i = \begin{cases} 1, & \text{if } P_i \leq \lambda \\ 0, & \text{if } P_i > \lambda \end{cases}$$

• Every node moves to maximize its utility

Algorithm

- time steps 1..T
- At every time step randomly select an agent, compute utility
- If utility is u = 0 move to an empty location to maximize utility
- Movements: 1) random location 2) nearest available location
- Repeat until either all utilities are maximized $\sum_i u_i = \theta N$ or reaches "frozen" state, no place to move, then $\sum_i u_i < \theta N$
- Total utility of society

$$U=\sum_{i}u_{i}$$

Measuring segregation

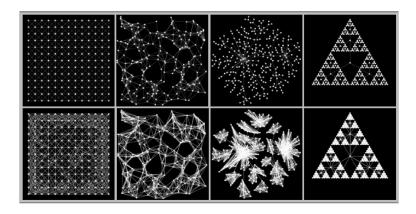
Schilling's solid mixing index

$$M = \frac{1}{n_A + n_B} \sum_i P_i$$

Freeman's segregation index

$$F = 1 - \frac{e^*}{E(e^*)}$$

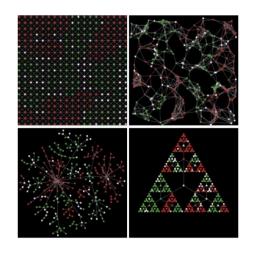
 $e^*=rac{e_{AB}}{(e_{AB}+e_{AA}+e_{BB})}$ - observed proportion of between group ties, $E(e^*)=rac{2n_An_B}{(n_A+n_B)(n_A+n_B-1)}$ - expected proportion for random ties


Assortative mixing

$$Q = \frac{1}{2m} \sum_{ij} (A_{ij} - \frac{k_i k_j}{2m}) \delta(c_i, c_j)$$

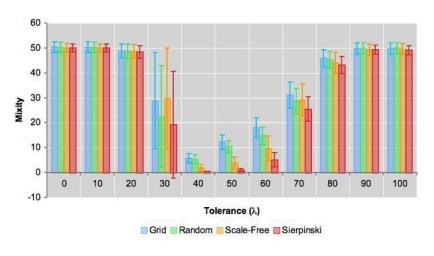
Spatial segregation on networks

Fixed degree $\emph{k}=10$ neighboring graphs: regular, random, scale-free, fractal



Arnaud Banos, 2010

Spatial segregation on networks


$$\lambda = 0.5, \theta = 0.8$$

Banos, 2010

Spatial segregation on networks

Banos, 2010

Summary

- Spatial segregation is taking place even though no individual agent is actively seeking it (minor preferences, high tolerance)
- Network structure does affect segregation
- Fixed characteristics (race) can become correlated with mutable (location)

References

- Dynamic Models of Segregation, Thomas C. Schelling, 1971
- Segregation in Social Networks, Linton Freeman, 1978
- Gauvin L, Vannimenus J, Nadal JP. Phase diagram of a Schelling segregation model. The European Physical Journal B, 70:293-304, 2009
- Arnaud Banos. Network effects in Schelling's model of segregation: new evidences from agent-based simulations. 2010

Course summary

- 1. Introduction to network science
- 2. Descriptive network analysis
- 3. Mathematical models of networks
- 4. Node centrality and ranking on networks
- 5. Network communities
- 6. Epidemics and information spread
- 7. Diffusion of innovation
- 8. Spatial model of segregation