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Abstract. Segmentation of anatomical regions of the brain is one of
the fundamental problems in medical image analysis. It is tradition-
ally solved by iso-surfacing or through the use of active contours/
deformable models on a gray-scale magnetic resonance imaging
(MRI) data. We develop a technique that uses anisotropic diffusion
properties of brain tissue available from diffusion tensor (DT)-MRI to
segment brain structures. We develop a computational pipeline
starting from raw diffusion tensor data through computation of invari-
ant anisotropy measures to construction of geometric models of the
brain structures. This provides an environment for user-controlled
3-D segmentation of DT-MRI datasets. We use a level set approach
to remove noise from the data and to produce smooth, geometric
models. We apply our technique to DT-MRI data of a human subject
and build models of the isotropic and strongly anisotropic regions of
the brain. Once geometric models have been constructed they can
be combined to study spatial relationships and quantitatively ana-
lyzed to produce the volume and surface area of the segmented
regions. © 2003 SPIE and IS&T. [DOI: 10.1117/1.1527628]

1 Introduction

Diffusion tensor magnetic resonance imaging1–4 ~DT-MRI!
is a technique used to measure the diffusion propertie
water molecules in tissues. Anisotropic diffusion can
described by the equation

]C

]t
5¹•~D¹C!, ~1!
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whereC is the concentration of water molecules, andD is
a diffusion coefficient, which is a symmetric second-ord
tensor

D5S Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

D . ~2!

Figure 1 presents a ‘‘slice’’ of the diffusion tensor volum
data of human brain used in our study. Each subimage
sents the scalar values of the associated diffusion te
component for one slice of the dataset.

Tissue segmentation and classification based on
MRI offers several advantages over conventional MR
since diffusion data contains additional physical inform
tion about the internal structure of the tissue being scann
However, segmentation and visualization using diffusi
data is not entirely straightforward. First, the diffusion m
trix itself is not invariant with respect to rotations, and th
elements that form the matrix will be different for differen
orientations of the sample or field gradient and theref
cannot themselves be used for classification purpo
Moreover, 3-D visualization and segmentation techniqu
available today are predominantly designed for scalar
sometimes vector fields. Thus, there are two fundame
problems in tensor imaging:~1! finding an invariant repre-
sentation of a tensor that is independent of a frame of
erence and constructing a mapping from the tensor field
a scalar or vector field and~2! visualization and classifica
tion of tissue using the derived scalar fields.

;
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Zhukov et al.
The traditional approaches to diffusion tensor imag
involve converting the tensors into an eigenvalu
eigenvector representation, which is rotationally invaria
Every tensor can then be interpreted as an ellipsoid w
principal axes oriented along the eigenvectors and r
equal to the corresponding eigenvalues. This ellipsoid
scribes the probabilistic distribution of a water molecu
after a fixed diffusion time.

Using eigenvalues and eigenvectors one can com
different anisotropy measures1,5–8that map tensor data ont
scalars and can be used for further visualization and s
mentation. Although eigenvalue/vector computation of
333 matrix is not expensive, it must be repeatedly p
formed for every voxel in the volume. This calculation ea
ily becomes a bottleneck for large datasets. For exam
computing eigenvalues and eigenvectors for a 5123 volume
requires over 20 CPU min on a powerful workstation. A
other problem associated with eigenvalue computation
stability—a small amount of noise will change not only t
values but also the ordering of the eigenvalues.9 Since
many anisotropy measures depend on the ordering of
eigenvalues, the calculated direction of diffusion and cl
sification of tissue will be significantly altered by the noi
normally found in diffusion tensor datasets. Thus it is d
sirable to have an anisotropy measure that is rotation
invariant, does not require eigenvalue computations, an
stable with respect to noise. The tensor invariants w
these characteristics were first proposed by Ulug and Zi10

In Sec. 2 of this paper we formulate a new anisotropy m
sure for tensor field based on these invariants.

Fig. 1 Slice of a tensor volume where every ‘‘element’’ of the image
matrix corresponds to one component of the tensor D.
126 / Journal of Electronic Imaging / January 2003 / Vol. 12(1)
i
-

e

-

,

e
-

s

-

Visualization and model extraction from the invaria
3-D scalar fields is the second issue addressed in this pa
One of the popular approaches to tensor visualization r
resents a tensor field by drawing ellipsoids associated w
the eigenvectors/values.11 This method was developed fo
2-D slices and creates visual cluttering when used in th
dimensions. Other standard computational fluid dynam
~CFD! visualization techniques such as tensor lines do
provide meaningful results for the MRI data due to rapid
changing directions and magnitudes of eigenvector/val
and also amount of noise present in the data. Rece
Kindlmann and Weinstein12 developed a volume-renderin
approach to tensor field visualization using eigenval
based anisotropy measures to construct transfer func
and color maps, that highlight some brain structures a
diffusion patterns.

In our work, we perform iso-surfacing on the 3-D scal
fields derived from our tensor invariants to visualize a
segment the data. An advantage of iso-surfacing over o
approaches is that it can provide the shape informa
needed for constructing geometric models, and compu
internal volumes and external surface areas of the extra
regions. A detailed discussion of the modeling method
presented in Sec. 3. Section 4 presents the results of ten
invariant calculations and model segmentation techni
with examples from a DT-MRI scan of a human head. S
tion 5 then describes the quantitative analysis of obtai
geometric models.

Finally, a number of recent publications13,14 have been
devoted to brain fiber tracking. This is a different and mo
complex task than the one addressed in this paper and
quires data with a much higher resolution and better S
than the data used in our study.

2 Tensor Invariants

Tensor invariants~rotational invariants! are combinations
of tensor elements that do not change after the rotation
the tensor’s frame of reference, and thus do not depend
the orientation of the patient with respect to the scan
when performing DT imaging. The well-known invarian
are the eigenvalues of diffusion tensor~matrix! D, which
are the roots of corresponding characteristic equation

l32C1•l21C2•l2C350, ~3!

with coefficients

Fig. 2 Isotropic C1 (left) and anisotropic Ca (right) tensor invariants
for the tensor slice shown in Fig. 1.
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Level set modeling and segmentation . . .
C15Dxx1Dyy1Dzz,

C25DxxDyy2DxyDyx1DxxDzz2DxzDzx1DyyDzz

2DyzDzy , ~4!

C35Dxx~DyyDzz2DzyDyz!2Dxy~DyxDzz2DzxDyz!

1Dxz~DyxDzy2DzxDyy!.

Since the roots of Eq.~3! are rotational invariants, the co
efficientsC1 , C2 , andC3 are also invariant. In the eige
frame of reference they can be easily expressed through
eigenvalues

C15l11l21l3 ,

C25l1l21l1l31l2l3 , ~5!

C35l1l2l3 ,

and are proportional to the sum of the radii, surface a
and the volume of the ‘‘diffusion’’ ellipsoid. Then instea
of using (l1 ,l2 ,l3) to describe the dataset, we can u
(C1 ,C2 ,C3). Moreover, sinceCi are the coefficients o
characteristic equation, they are less sensitive to noise,
rootsl i of the same equation.11

Any combination of the preceding invariants is, in tur
an invariant. We consider the following dimensionle
combination:C1C2 /C3 . In the eigenvector frame of refer
ence, it becomes

C1C2

C3
531

l21l3

l1
1

l11l3

l2
1

l11l2

l3
, ~6!

and we can define a new dimensionless anisotropy mea

Ca5
1

6 S C1C2

C3
23D . ~7!

It is easy to show that for isotropic diffusion, whenl1

5l25l3 , the coefficientCa51. In the anisotropic case
this measure is identical for both linear, directional diff
sion (l1@l2'l3) and planar diffusion (l1'l2@l3) and
is equal to

Ca
limit'

1

3 S 11
l1

l3
1

l3

l1
D . ~8!

Thus Ca is always;lmax/lmin and measures the mag
nitude of the diffusion anisotropy. Note that we use eige
value representation here only to analyze the behavio
the coefficientCa , but we use invariants (C1 ,C2 ,C3) to
compute it using Eqs.~5! and ~7!. IsotropicC1 and aniso-
tropic Ca tensor invariants maps for the data slice from F
1 is shown in Fig. 2.

3 Geometric Modeling

Two options are usually available for viewing the sca
volume datasets, direct volume rendering15,16 and volume
e

n

re

f

segmentation17 combined with conventional surface rende
ing. The first option, direct volume rendering, is capable
supplying only images of the data. While this method m
provide useful views of the data, it is well known that it
difficult to construct the exact transfer function that hig
lights the desired structures in the volume dataset.18 Our
approach instead focuses on extracting geometric mode
the structures embedded in the volume datasets. The
tracted models can be used for interactive viewing, but
segmentation of geometric models from the volum
datasets provides a wealth of additional benefits and po
bilities. The models can be used for quantitative analysis
the segmented structures, for example, the calculation
surface area and volume; quantities that are important w
studying how these structures change over time. The m
els may be used to provide the shape information neces
for anatomical studies and computational simulation,
example, electroencephalogram/magnetoencephalog
~EEG/MEG! modeling within the brain.19 Creating separate
geometric models for each structure enables the straigh
ward study of the relationship between the structures, e
though they come from different datasets. The models
also be used within a surgical planning/simulation/V
environment,20 providing the shape information needed f
collision detection and force calculations. The geome
models can even be used for manufacturing real phys
models of the structures.21 It is clear that there are numer
ous reasons to develop techniques for extracting geom
models from diffusion tensor volume datasets.

The most widely used technique for extracting polyg
nal models from volume datasets is the Marching Cu
algorithm.22 This technique creates a polygonal model th
approximates the iso-surface embedded in a scalar vol
dataset for a particular iso-value. The surface represent
the points within the volume that have the same sca
value. The polygonal surface is created by examining ev
‘‘cube’’ of eight volume grid points and defining a set o
triangles that approximates the piece of the iso-surf
within the space bounded by the eight points. While t
Marching Cubes algorithm is easy to understand a
straightforward to implement, applying it directly to ra
volume data from scanners can produce undesirable res
as seen in top row images in Figs. 4 and 7. The algorit
is susceptible to noise and can produce many unwan
triangles that mask the central structures in the data.
alleviate this problem, we utilize a deformable model a
proach to smooth the data and remove the noise-rel
artifacts. Many types of deformable models have been p
posed for extracting structures from volumes.17,23 We uti-
lize level set models as they have been shown to be flex
and effective for segmentation.24–28 Level set methods
produce active deformable surfaces that may be direc
to conform to features in a volume dataset while simul
neously applying a smoothing operation based on lo
surface curvature.28 Most importantly, they easily
change topology during deformation and have no fixed
rameterization, enabling them to represent comp
shapes.
Journal of Electronic Imaging / January 2003 / Vol. 12(1) / 127
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Zhukov et al.
3.1 Level Set Models

A level set model29,30 specifies a surface as a level set~iso-
surface! of a scalar volumetric function,f:U°R, where
U,R3 is the range of the surface model. Thus, a surfacS
is

S5$suf~s!5k%, ~9!

andk is the isovalue. In other words,S is the set of points
s in R3 that composes thek’ th iso-surface off. The em-
beddingf can be specified as a regular sampling on a r
tilinear grid. The surfaces may propagate with~time-
varying! curvature-dependent speeds. Level set meth
provide the mathematical and numerical mechanisms
computing surface deformations as iso-values off by solv-
ing a partial differential equation on the 3-D grid (U). That
is, the level set formulation provides a set of numeri
methods that describes how to manipulate the gray-s
values in a volume, so that the iso-surfaces off move in a
prescribed manner~see Fig. 3!.

There are two different approaches to defining a defo
able surface from a level set of a volumetric function,
described in Eq.~9!. Either one can think off~s! as a static
function and change the iso-valuek(t) or alternatively fixk
and let the volumetric function dynamically change in tim
i.e., f(s,t). Following the second approach, we can ma
ematically express the dynamic model as

f~s,t !5k. ~10!

To transform this definition into partial differential equatio
that can easily be solved by standard numerical techniq
we differentiate both sides of Eq.~10! with respect to time
t, and apply the chain rule:

]f~s,t !

]t
1¹f~s,t !•

ds

dt
50. ~11!

Equation ~11! is sometimes referred to as a ‘‘Hamilton
Jacobi-type’’ equation and defines an initial value probl
for the time-dependentf. Let ds/dt be the movement of a
point on a surface as it deforms, such that it can be
pressed in terms of the position ofsPU and the geometry
of the surface at that point, which is, in turn, a different
expression of the implicit function,f. This gives a partial
differential equation~PDE! on f: s[s(t):

]f

]t
52¹f•

ds

dt
[2¹f•F~s,Df,D2f,...!, ~12!

where F is a user-defined ‘‘speed’’ term which general
depends on a set of order-n derivatives off, Dnf, evalu-
ated ats, as well as other functions ofs. Typically F~x!
combines a data term with a smoothing term, which p
vents the solution from fitting too closely to nois
corrupted data. There are a variety of surface-motion te
that can be used in succession or simultaneously in a lin
combination to formF~x!. For the work presented in thi
paper, we combine a feature attraction term and a smo
ing term weighted28 by a factorb,
128 / Journal of Electronic Imaging / January 2003 / Vol. 12(1)
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F5Fattr1bFcurv. ~13!

The first termFattr is due to the attraction to the edges in t
volume. It attracts the surface models to certain gray-sc
features in the input data. For instance, the gradient m
nitude indicates areas of high contrast in volumes. By f
lowing the gradient of such gray-scale features, surf
models are drawn to minimum or maximum values of th
feature. Typically, gray-scale features, such as the grad
magnitude are computed with a scale operator, e.g
derivative-of-Gaussian kernel. If models are properly i
tialized, they can move according to the gradient of t
gradient magnitude and settle onto the edges of an obje
a resolution that is finer than the original volume. For th
work we used the attraction force

Fattr5¹u~¹~G* I ~x!!u, ~14!

where the volume dataI (x) is convolved with a Gaussian
kernelG with s'0.5, such that a positive sign moves su
faces toward maxima and the negative sign toward minim

There are a variety of options for the curvature smoo
ing terms in Eq.~13!, and the question of efficient, effectiv
higher order smoothing terms is the subject of on-go
research.30 For the work presented in this paper the smoo
ing term uses the mean curvatureKM of the level setS to
form a vector in the direction of the surface normaln:

Fcurv5KMn5~¹•n!n5¹•S ¹f

u¹fu D ¹f

u¹fu
. ~15!

It is weighted by a factorb, enabling the user to control th
amount of smoothing, and is tuned for each dataset.
level set propagation stops when theFattr andbFcurv terms
cancel each other, or when the number of computatio
iterations reaches a user-specified value.

Fig. 3 Level set models represent curves and surfaces implicitly
using gray-scale images. For example, an ellipse is represented as
the level set of an image (top). To change the shape of the ellipse
we modify the gray-scale values of the image by solving a PDE
(bottom).
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Level set modeling and segmentation . . .
Level set models have a number of practical and th
retical advantages over conventional surface models, e
cially in the context of deformation and segmentatio
Level set models are topologically flexible; they easily re
resent complicated surface shapes that can, form holes,
to form multiple objects, or merge with other objects
form a single structure. These models can incorporate m
~millions! of degrees of freedom, and therefore they c
accommodate complex shapes. Indeed, the shapes fo
by the level sets off are restricted only by the resolution o
the sampling. Thus, there is no need to reparameterize
model as it undergoes significant changes in shape.

The solutions to the partial differential equations d
scribed earlier are computed using finite differences o

Fig. 4 Segmentation using isotropic measure V1 for the first DT-MRI
dataset. The first row is the marching cubes iso-surface with 7.5.iso-
value. The second row is the result of flood-fill algorithm applied to
the same volume and used for level set initialization. The third row is
the final level set model.
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discrete grid. The use of a grid and discrete time st
raises a number of numerical and computational issues
are important to the implementation. However, it is outs
of the scope of this paper to give a detailed mathemat
description of such a numerical implementation. Rather
shall give a short outline here and refer to the actual sou
code, which is publicly available.*

Equations~12!–~15! can be solved using finite forwar
differences if one uses the up-wind scheme, proposed
Osher and Sethian,29 to compute the spatial derivatives
This up-wind scheme produces the motion of level-
models over the entire range of the embedding, i.e., for
values of k in Eq. ~10!. However, this method require
updating every voxel in the volume for each iteratio
which means that the computation time increases as a f
tion of the volume, rather than the surface area, of
model. Because segmentation requires only a single mo
the calculation of solutions over the entire range of is
values is an unnecessary computational burden.

This problem can be avoided by the use of narrow-ba
methods, which compute solutions only in a narrow band
voxels that surround the level set of interest.25 In previous
work31 we described an alternative numerical algorith
called the sparse-field method, that computes the geom
of only a small subset of points in the range and require
fraction of the computation time required by previous alg
rithms. We have shown two advantages to this method.
first is a significant improvement in computation times. T
second is increased accuracy when fitting models to forc
functions that are defined to subvoxel accuracy.

4 Segmentation

In this section, we demonstrate the application of our me
ods to the segmentation of DT-MRI data of the hum
head. We use a high-resolution data set from a normal
unteer, which contains 60 slices each of 1283128 pixels
resolution. The raw data is sampled on a regular unifo
grid.

We begin by generating two scalar volume datas
based on the invariants described in Sec. 2. The first sc
volume dataset (V1) is formed by calculating the trace (C1)
of the tensor matrix for each voxel of the diffusion tens
volume. It provides a single number that characterizes
total diffusivity at each voxel within the sample. Highe
values signify greater total diffusion irrespective of dire
tionality in the region represented by a particular voxel.
slice from this volume can be seen in Fig. 2~left!. The
second scalar volume dataset (V2) is formed by calculating
(C1 ,C2 ,C3) invariants for each voxel and combining the
into Ca . It provides a measure of the magnitude of t
anisotropy within the volume. Higher values identify r
gions of greater spatial anisotropy in the diffusion prop
ties. A slice from the second scalar volume is presented
Fig. 2 ~right!. The measureCa does not by definition dis-
tinguish between linear and planar anisotropy. This is s
ficient for our current study since the brain does not cont

*The level-set software used to produce the morphing results in this p
is available for public use in the VISPACK libraries at http:
www.cs.utah.edu/;whitaker/vispack.
Journal of Electronic Imaging / January 2003 / Vol. 12(1) / 129



Zhukov et al.
Fig. 5 Model segmentation from volume V2 . Top left image is an iso-surface of value 1.3, used for initialization of the level set. Clockwise, are
the results of level set development with corresponding b values of 0.2, 0.4 and 0.5.
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measurable regions with planar diffusion anisotropy.
therefore require only two scalar volumes to segment
DT dataset.

We then utilize level set methods to extract smooth
models from the two derived scalar volumes. Our level
segmentation approach consists of defining a set of suit
preprocessing techniques for initialization and selecti
tuning different feature-extracting terms in the level s
equation to produce a surface deformation. Within our s
mentation framework a variety of operations are availa
in each stage. A user must ‘‘mix-and-match’’ these ope
tions to produce the desired result. We describe only th
operations required to produce the models in this pape
more detailed description of our segmentation meth
may be found in Ref. 28.

Because level set models move using gradient desc
they seek local solutions, and therefore the results
strongly dependent on the initialization, i.e., the start
position of the surface. Thus, one controls the nature of
solution by specifying an initial model from which the su
face deformation process proceeds. We are able to com
tationally construct reasonable initial estimates direc
from the input data by combining a variety of technique

The first step involves filtering the input data with
low-pass Gaussian filter (s'0.5) to blur the data and
thereby reduce noise. This tends to distort shapes, bu
initialization can be only approximate. Next, the volum
voxels are classified for inclusion/exclusion in the initia
130 / Journal of Electronic Imaging / January 2003 / Vol. 12(1)
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ization based on the filtered values of the input datak
'7.0 for V1 and k'1.3 for V2). For gray-scale images
such as those used in this paper, the classification is equ
lent to high- and low-thresholding operations. These ope
tions are usually accurate to only voxel resolution, but
deformation process will achieve subvoxel results. The
nal step before the actual level set deformation consis
performing a set of topological or logical operations on t
voxels to ‘‘clean up’’ the initialization surface. This enable
the removal of undesired internal and external structu
which is extremely helpful to obtain simple models. It in
cludes unions or intersections of voxel sets to create
better initializations. Specifically, the topological oper
tions consist of connected-component analyses~e.g., flood
fill ! to remove small pieces or holes from objects.

The initialization already described positions the mod
near the desired solution while retaining certain proper
such as consistent geometry, connectivity, etc. Given
rough initial estimate, the level set surface deformation p
cess, as described in Sec. 3.1, moves the surface m
toward specific features in the data.

Figures 4 and 5 present two models that we extrac
from DT-MRI volume datasets using our techniques. Figu
6 contains segmentations from volumeV1 , the measure of
total diffusivity. The image in the first row shows a marc
ing cubes iso-surface using an iso-value of 7.5. In the b
tom we have extracted just the ventricles fromV1 . This is



ll
dle
of
nd

3

ec
me
es
an
ha
iso
to
il-
n-
p-

nte
ey
e

e
his
n.
o-
e-
-
he
om

c/
ide
e

to
-
ical

ted
-

in
ip.
lies
ter

Level set modeling and segmentation . . .
accomplished by creating an initial model with a flood-fi
operation inside the ventricle structure shown in the mid
image. This identified the connected voxels with value
7.0 or greater. The initial model was then refined a
smoothed with the level set method described in Section
using ab value of 0.2.

Figure 5 again provides the comparison between dir
iso-surfacing and and level set model, but on the volu
V2 . The image in the top-left corner is a marching cub
iso-surface using an iso-value of 1.3. There is signific
high-frequency noise and features in this dataset. The c
lenge here was to isolate coherent regions of high an
tropic diffusion. We applied our segmentation approach
the dataset and worked with neuroscientists from LA Ch
drens Hospital, City of Hope Hospital, and Caltech to ide
tify meaningful anatomical structures. We applied our a
proach using a variety of parameter values, and prese
our results to them, asking them to pick the model that th
felt best represented the structures of the brain. Figur
contains three models extracted fromV2 at different values
of smoothing parameterb used during segmentation. Sinc
we were not looking for a single connected structure in t
volume, we did not use a seeded flood-fill for initializatio
Instead we initialized the deformation process with an is
surface of value 1.3. This was followed by a level set d
formation using ab value of 0.2. The result of this segmen
tation is presented on the bottom-left side of Fig. 5. T
top-right side of this figure presents a model extracted fr

Fig. 6 Combined model of ventricles and (semitransparent) aniso-
tropic regions: rear, exploded view (left), bottom view (right), side
view (bottom). Note how model of ventricles extracted from isotropic
measure dataset V1 fits into model extracted from anisotropic mea-
sure dataset V2 .
,

t

t
l-
-

d

5

V2 using an initial iso-surface of value 1.4 and ab value of
0.5. The result chosen as the ‘‘best’’ by our scientifi
medical collaborators is presented on the bottom-right s
of Fig. 5. This model is produced with an initial iso-surfac
of 1.3 and ab value of 0.4. Our collaborators were able
identify structures of high diffusivity in this model, for ex
ample, the corpus callosum, the internal capsul, the opt
nerve tracks, and other white matter regions.

We can also bring together the two models extrac
from datasetsV1 andV2 into a single image. Figure 6 dem
onstrates that we are able to isolate different structures
the brain and show their proper spatial interrelationsh
For example, it can be seen that the corpus callosum
directly on top of the ventricles, and that the white mat
fans out from both sides of the ventricles.

Fig. 7 Segmentation using anisotropic measure V2 from the second
DT-MRI dataset. The first row is the marching cubes iso-surface with
iso-value 1.3. The second row is the result of flood-fill algorithm
applied to the volume and used for level set initialization. The third is
the final level set model.
Journal of Electronic Imaging / January 2003 / Vol. 12(1) / 131
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Zhukov et al.
Finally, to verify the validity of our approach we applie
it to the second data set of a different volunteer. This d
set has 20 slices of the 2563256 resolution. We generate
the anisotropy measure volumeV 2

2 and performed the leve
set model extraction using the same iso-values and smo
ing parameters as forV2 . The results are shown in Fig. 7

5 Model Properties

Once a user has produced a satisfactory model of the
sired segmented structures, she or he can perform a nu
of quantitative geometric calculations on the resulting p
lygonal model, e.g., total area, volume, and average cu
ture. Though most of these measures are interesting f
the modeling point of view, the volume of the ventricle
for example, can have clinical applications for disorder
agonosis and population comparison.

The models generated in the previous section are re
sented by triangle meshes consisting of verticesvi , connec-
tivities, and associated normal vectors. The total surf
area of the model can be easily computed by adding
areasAi of each triangle

A5 (
i 51

Npoly

Ai5 (
i 51

Npoly 1

2
u~vi

12vi
2!3~vi

12vi
3!u, ~16!

wherevi
k is thek’ th vertex of trianglei . Assuming that all

of the extracted models are composed of closed polygo
surfaces, we can compute enclosed volume as a a signed
sum of the pyramids with a base composed of thei ’ th
triangle and a top vertex places at the origin of t
dataset.32 Then

V'
1

6 (
i 51

Npoly

Ai•
1

3
~vi

11vi
21vi

3!•Ni . ~17!

Table 1 lists values of polygon count, surface area a
total volume, for the models extracted from scalar volu
datasets (V1 and V2), before and after the level set algo
rithm is applied to the volumes. We note that the polyg
count drops, because of the simplified form of the fin
extracted triangular mesh. The total surface area decrea
also due to smoothing imposed by the level set model. V
ume decrease is partially caused by the removal~i.e., col-
lapse! of small high-frequency fragments cluttering th
model and partially due to deformations of the model.

6 Conclusions

We developed a computational pipeline for DT-MRI lev
set modeling and segmentation. We proposed a new r

Table 1 Total polygon count in the models Npoly , surface areas A
and volumes V and before/after application of the level set smooth-
ing to datasets V1 and V2 .

Data Set Npoly A (cm2) V (cm3)

V1 36,620/15,096 188/85 26/22

V2 142,212/81,488 760/743 98/87
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tionally invariant anisotropy measure, which does not
quire eigenvalue computations. We used the invariants
generate scalar volumes that characterize the total diffu
ity and diffusion anisotropy of a DT-MRI scan of a huma
brain. Applying level set modeling and segmentation te
niques to the derived scalar volumes we created geom
models of specific brain structures, e.g., the ventricles, c
pus callosum, and the internal capsul. The geometric m
els were then used for quantitative analysis, including v
ume and surface area calculations.
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