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Introduction

In this paper, we introduce a novel method for
localizing epileptogenic sources in patients with multi-
focal temporal lobe epilepsy.  Localizing multiple deep
sources is computationally challenging due to
superposition of signal from the active regions and
“blurring” of the signal as it projects to the scalp.  We
address these challenges by incorporating statistical
methods to separate the signal into independent
activation maps, and by constructing a detailed
geometric model of the patient’s head.
The EEG data for our study comes from multi-focal
seizure events.  As such, it is known in advance that the
signal will not be attributable to a single dipole source.
Rather, the time series will contain contributions from
multiple epileptogenic regions.  Each region
(representable as a dipole) will have its own
independent time course.  In order to reduce the noise
inherent in the raw data, we perform an eigen-
decomposition (PCA) and discard the small
components.  Having removed the noise, but still faced
with a superposition of multiple dipole activations,  we
perform a blind source separation technique (ICA) in
order to separate the sources.  The result of this
statistical preprocessing of the raw EEG data is a
separate activation map for each dipole source.  Each
activation map is then fed into a source localization
algorithm, in order to find the separate epileptic foci.
The source localization algorithm identifies the dipole
which, for a particular geometric model, best accounts
for the measured EEG signal.  Choosing the model
requires careful consideration, especially since we
know a priori that the sources are likely to be deep
relative to the scalp surface.  In [1], Huiskamp et al
showed that a spherical shell model is not adequate to
localize deep temporal lobe sources.  Rather, a more
realistic patient model was required.  Furthermore,
because we desire as accurate a source localization as
possible, we have chosen to construct a model that
incorporates local conductivity anisotropy.  Thus, we
have opted for a finite element, rather than boundary
element model.
Putting the pieces together, we identify multi-focal
regions of activation by 1) performing PCA to reduce
the data space; 2) utilizing ICA to extract independent

activations; 3) constructing a patient-specific finite
element model; and 4) localizing each dipole
independently with a downhill-simplex search method.

Methods

We begin with the construction of a patient-specific
computational model.  The realistic head geometry is
obtained originally from raw MRI data.  This data is
then segmented; that is, each tissue material is labeled
in the underlying voxels [2].  The segmented head
volume can then be tetrahedralized via a mesh generator
which preserves the classification when mapping from
voxels to elements [3].  For each tissue classification,
we assign a conductivity tensor from the literature [4].
A cut-through of the classified mesh is shown in
Figure 1.

Figure 1: Cut-through of the finite element.  The full
model contains approximately 164,000 nodes and
768,000 elements.  As indicated by gray-scale coding,
each element is assigned a conductivity tensor
according to its underlying anatomic tissue.



The next step of our method is to preprocess the raw
EEG data into independent activation sequences.  This
processing is done in two stages: PCA and ICA.  Once
the EEG data has been processed, we will apply a
source localization method in order to identify the
active region responsible for each activation sequence.

PCA Preprocessing

Let X  be a spatio-temporal data matrix, where every
row contains voltages at a particular electrode at
consecutive time steps and every column contains
voltages for all electrodes at some moment in time.  We
first decompose the initial data into signal and noise
subspaces [5].  This is achieved by finding the eigen-
decomposition of the covariance matrix R , where

}{ TXXER = , and discarding eigenvectors with

eigenvalues smaller than some noise threshold.  We can
estimate an accuracy of such a decomposition by
attempting to restore the original signals from this
signal subspace; we choose a threshold such that our
restoration is at least 98%.  Having chosen a subspace,
we project the original data:
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where Λ and U  are the eigenvalues and eigenvectors
which form the signal subspace.
We now exploit the assumption that the original signals

were independent, as it allows us to decompose sV  into

independent components using independent component
analysis (ICA) [6].

ICA Decomposition

˝
The ICA algorithm proceeds by finding an unmixing

matrix W , such that rows of the matrx sWVS =  will

be independent, i.e. the multivariate probability density
function (pdf) of S  is equal to the product of the pdf of

each signal in S . The unmixing

),...,,( 21 nwwwW =  matrix can be constructed

iteratively, for example, by using a fixed-point
algorithm [7] to compute its columns:
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where v  are vectors drawn from the signal subspace

sV  and k is the iteration number.

To ensure that at each time we estimate a different
independent component, we use a deflation scheme,
where we work with the projection onto the subspace
orthogonal to already restored components.

Now we can compute independent source signal matrix
S  by applying W  to the signal subspace data,

sWVS = .

To restore the electrode recordings due to just a single
source, we zero out all of the rows but one in the signal
matrix S , and compute the back projection:

Λ= UYi iSW 1− ,

where the first part of this expression corresponds to
back projecting from the signal subspace onto the

electrodes.  These iY vectors are what we will be trying

to reproduce, one at a time, with our simulations.
So, by using signal pre-processing we have effectively
reduced the multi-source localization problem to a
sequence of single-source localizations.  We know the

potentials, iY , at the electrodes on the scalp surface and

having constructed a geometric finite elements models
of the head volume, we now need to find a single dipole
which creates that map.

FEM Solution

Mathematically, the problem of computing the electric
potentials within the cranial volume due to a set of
current sources can be described by Poisson's equation
[8]:

sJ=Φ∇∇ )(. σ ,

˝
subject to the Neumann boundary conditions:

.)( Φ∇ n 0= ,

everywhere on the scalp except for at the electrodes
where the electrostatic potential is known, φ=Φ ;

sJ are the current sources.

We can solve this problem using the finite element
method (FEM) to compute a solution within the entire
volume domain [9].  Using FEM we obtain the system
of equations:

ijij bA =φ ,

˝
where A  is a stiffness  matrix, b  is a source vector

and φ  is a vector of unknown potentials at every node.

The A  matrix is sparse (for our simulation, it contained
approximately 2,000,000 non-zeroes entries),
symmetric and positive definite.



We solve the above system using  LU-decomposition,
or, since the matrix A  is symmetric positive definite,
Cholesky factorization.  This allows us to use multiple
right hand sides for the same stiffness matrix without
re-factorizing it, thus minimizing our computational
overhead.

Source Localization

To compute the solution of the described inverse
problem, we find the set of dipoles which generate the
“best fit” (minimal error) of computed electrode
potentials to measured electrode potentials.  We use
correlation coefficient CC , as our error metric.
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where iφ
)

is the result of the forward model computation

(as described in the subsection above) for a particular
dipole source.  A value of 1=CC  indicates that the
simulated and  recovered values at that time instant  are
identical up to a scaling factor.
Previously, finding this minimum requires solving the
forward problem for every possible configuration of a
large number of dipoles.  However, because of our
statistical preprocessing, we only have to find one
dipole for each activation map. Each dipole in the
model has 6 parameters: 3 location coordinates

),,( zyx , 2 degrees of orientation ),( φθ , and the

dipole strength, P .  We will use first 5 as the
parameters for the source localization process. We do
not need to optimize for the dipole strength, since
strength will not effect our error metric.  Rather, P  can
be recovered as a post-process, after the optimal dipole
position and orientation have been determined.  We use
the downhill simplex method [10] to find the minimum
of the multidimensional cost function.

Discussion

This study has proposed a novel method for source
localization of multiple  independent, stationary
sources.  We have applied this method to the
localization of dipolar epileptic foci and have
successfully recovered independent sources for each
focus, as shown in Figure 2.  The positions of the foci
correspond to the temporal lobes, preliminarily
indicating the qualitative accuracy of our method.  This
demonstrates the importance of using a realistic head
model with anisotropic conductivities.  As a future
study, we will compare the results of our method with

results generated from BEM models and FEM models
without anisotropy.

Figure 2: Three dipole sources (arrows) localized
within the temporal lobes.  Orthogonal MRI
slices(background) and electrode positions (spheres)
are shown for reference.
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