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Two-Electron State in a Disordered 2D Island: Pairing Caused by the Coulomb Repulsion
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2Theoretical Physics Institute and Department of Physics, University of Minnesota, Minneapolis, Minnesota 554
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We show the existence of bound two-electron states in an almost depleted two-dimensional island.
These two-electron states are carried by special compact configurations of four single-electron levels.
The existence of these states does not require phonon mediation, and is facilitated by the disorder-
induced potential relief and by the electron-electronrepulsiononly. The density of two-electron states
is estimated and their evolution with the magnetic field is discussed. [S0031-9007(96)00822-8]

PACS numbers: 73.20.Dx, 73.40.Gk, 73.40.Sx
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In a recent experiment [1,2] the tunneling of electro
from a semimetallic electrode into the localized sta
(LS’s) in a quantum well was studied. By using t
electron beam lithography, a dot with a diameter
small as1 mm was formed. The small size of the d
enabled the authors to detect the individual tunneling a
These acts manifested themselves as narrow peaks i
differential capacitance measured as a function of the
applied across the structure. To introduce the LS’s in
GaAs quantum well the neighboring AlGaAs region w
doped with Si donors.

The authors identified the origin of LS’s by studyin
the evolution of the peak positions with magnetic fie
B, perpendicular to the well. They associated the pe
with electronic states of essentially two types: (i) Grou
state in the cylindrically symmetric parabolic potenti
the B dependence of the corresponding peaks ab
certainB approached the one for the lowest Landau lev
Such a parabolic confinement presumably results from
fluctuations in the concentration of donors in the barr
(ii) Bound state of an electron at a Si donor which co
migrate into the well during the growth. For these sta
the increase of the energy withB was much slower than
for the group (i).

There is a puzzling feature in the data reported in
few of the peaks observed were twice as high as isol
one-electron peaks. This suggests that two elect
tunnel into the well at the same voltage applied.
tracing the B dependences of these peaks the auth
have ruled out the possibility that they reflect acciden
degeneracies in the energy positions of LS’s in so
distant minima. All double peaks retained their heig
within a certain range ofB and then split into doublet
at some critical value of the magnetic field. Such
behavior indicates that both LS’s involved “feel” ea
other and, thus, are located close in space. On the o
hand, it is apparent that two close potential minima can
accommodate two electrons at the same bias. Even i
energy levels are degenerate, tunneling of one elec
would elevate the level for the second electron, so that
subsequent tunneling will occur at the bias larger by
energy of the Coulomb repulsion. The authors mentio
54 0031-9007y96y77(7)y1354(4)$10.00
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that the physical mechanism which could resolve t
paradox is the polaronic effect [3]. Their conjecture w
further developed in [4], where the two-electron state
a hybrid hydrogenic-parabolic potential in the presen
of electron-phonon interaction was considered. The p
binding condition used in [4] implicitly assumed that th
two electrons share the same lattice deformation, wh
leads to the enhancement of the polaronic effect. In f
the polaronic shift per electron in the paired state u
in [4] is twice the shift for a single localized electron
Under this assumption bound two-electron states w
found even at weak electron-phonon interaction, provid
that the distance between the hydrogenlike impurity a
the center of the parabolic potential is larger than8a0,
wherea0 is the radius of the hydrogenic state. For su
distances the enhanced polaronic shift overweighs
Coulomb repulsion. However, we find the underlyin
assumption hard to justify. Indeed, the spatial scale
the polaronic deformation coincides with the size of
single-electron state [5]; two distant electrons do not sh
the same deformation, and, therefore, the correspon
enhancement of the polaron shift is suppressed.

In the present paper we demonstrate that the dou
peaks observed in [1] can be explained without
voking the electron-phonon interactions. Our exp
nation is based exclusively on electrostatics. W
assume that the electrons are strongly localized
neglect the overlap of their wave functions and, cor
spondingly, the exchange interaction. On the other ha
the modification of the Coulomb interaction betwe
localized electrons due to the presence of an electr
plays an important role in our picture. We show that,
contrast to [4], the objects responsible for two-electr
tunneling are the compact groups of LS’s and calcul
the relative portion of the double peaks.

First of all, let us establish the general criterion f
two-electron tunneling. Consider a cluster ofN LS’s
occupied byn electrons. The distribution of electron
over LS’s corresponds to theminimal possible energy
which we denote asEn

N . The position of the Ferm
level in the electrode,E1

F , at which an additional electron
will enter the cluster is determined from the conditio
© 1996 The American Physical Society
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the
E1
F 1 En

N ­ En11
N . If two electrons enter the cluster, th

corresponding position of the Fermi level,E2
F , satisfies

the relation2E2
F 1 En

N ­ En12
N . Double peak occurs i

E2
F , E1

F . This leads us to the following criterion:

En12
N 1 En

N , 2En11
N . (1)

Obviously condition (1) cannot be satisfied ifN ­ 2.
Formally, if we denote the energies of two LS’s as´1 and
´2 so that´1 , ´2, thenE1

2 ­ ´1 and E2
2 ­ ´1 1 ´2 1

V12, V12 being the interaction energy of two electrons o
cupying the first and the second LS’s. We see thatE2

2 .

2E1
2 —the inequality opposite to (1).
Now we will prove that forN ­ 3 the occurrence o

a double peak is also forbidden by Eq. (1). By analo
to the consideration above, the casen ­ 0 is obvious for
any N since a single electron on a cluster will occu
the LS with the lowest energy level, so that the condit
(1) is violated even without the Coulomb repulsio
Thus the only case to be considered isn ­ 1. Let us
again order the energies of LS’s:´1 , ´2 , ´3. Then
E1

3 ­ ´1, and E3
3 ­ ´1 1 ´2 1 ´3 1 V12 1 V13 1

V23. Now there are three candidates forE2
3 in accordance

with three variants of occupation ofN ­ 3 cluster by
two electrons. It is important thatE2

3 is the minimal of
these three energies. This means that if the double
is possible, the condition (1) should be met when we s
stitute forE2

3 eachof these energies. Let us choose t
of the three candidates forE2

3 , namely,´1 1 ´2 1 V12
and ´1 1 ´3 1 V13, which correspond to the occupatio
of the first and second and the first and third LS
respectively. Substituting them into the right-hand s
of Eq. (1), we get the following system of inequalities:

´3 2 ´2 , V12 2 V13 2 V23 , (2)

´2 2 ´3 , V13 2 V12 2 V23 . (3)

We see that sinceV23 . 0 the conditions (2) and (3) ar
inconsistent and, hence, the clusters of three LS’s ca
provide double peaks.

Let us turn to the caseN ­ 4. Because the numbe
of variants increases dramatically in this case we
restrict our search. Namely, we will assume that the
LS with the lowest energý 1 is located in the cente
of an equilateral triangle while the other three LS’s w
energieś 2 , ´3 , ´4 are located in the vertexes. Th
the energy of repulsion takes only two values,V1 and
V2 (see Fig. 1). The first electron enters the system
E1

F ­ E1
4 ; ´1. It is easy to see that there are on

two energies competing forE2
4 , which are´1 1 ´2 1 V1

and ´2 1 ´3 1 V2. All the other two-electron state
have higher energies. Similarly, we conclude that th
are only two candidates forE3

4 . They are´1 1 ´2 1

´3 1 2V1 1 V2 and´2 1 ´3 1 ´4 1 3V2. Let us again
assumen ­ 1 in the condition (1). Then, according
the general procedure, one should choose the lowe
two values for E3

4 and check condition (1) with bot
candidates forE2

4 . If we pick the first candidate fo
E3

4 and ´1 1 ´2 1 V1 for E2
4 , this condition reduces t
-

y

n
.

ak
b-

´3 2 ´2 , 2V2, which contradicts our assumption th
the energies are ordered. Thus, the only remaining op
is that from two candidates forE3

4 the second one has th
lower energy. The corresponding condition for this c
be written as

´4 2 ´1 , 2sV1 2 V2d . (4)

Now with E3
4 ­ ´2 1 ´3 1 ´4 1 3V2 the system of

inequalities, resulting from (1) in a similar way as (2) a
(3), takes the form

s´4 2 ´2d 1 s´3 2 ´1d , 2V1 2 3V2 , (5)

s´4 2 ´2d 2 s´3 2 ´1d , 2V2 . (6)

Upon summation of these two inequalities we get

´4 2 ´2 , V1 2 2V2 . (7)

On the other hand, we have assumed that´4 . ´2. Then
the principal requirement for a double peak to oc
reduces toV1 . 2V2. If this requirement is met, th
inequalities (5) and (6) are consistent. This is illustra
in Fig. 1 where the graphical solution of the system
and (6) is shown. In principle, one should also che
that the energies of LS’s, satisfying the system, satisfy
condition (4) as well. Note, however, that the conditi
(5) is stronger than (4), so that the latter is automatic
,
e

ot

ill
st

at

re

of

FIG. 1. Cluster of four LS’s providing a double peak (a
Graphical solution of the system (5) and (6). Dashed is
region within which this system is satisfied (b).
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obeyed, as can readily be seen from the following ch
of relations:

´4 2 ´1 , s´4 2 ´2d 1 s´3 2 ´1d , 2V1 2 3V2

, 2sV1 2 V2d . (8)

Thus we have demonstrated that, within the restric
geometry considered, double peaks can occur prov
that V1 . 2V2. Obviously, the relation betweenV1
andV2 is opposite if the interaction between the localiz
electrons is simply the Coulomb repulsion. Since
distance between the first and the second LS is

p
3 times

smaller than the distance between the second and
third LS (see Fig. 1) we haveV1 ­

p
3 V2. The situation

changes if a metallic electrode is placed at a dista
d from the plane of the localized electrons. Then
Coulomb interaction is modified to

V srd ­
e2

k

µ
1
r

2
1

p
r2 1 4d2

∂
. (9)

The modified interaction falls off as1yr3, and we indeed
haveV1 . 2V2 as soon as the distance between the
and the second LS’s exceeds0.33d.

If the system (5) and (6) is satisfied, the evoluti
of the occupation of the cluster with increasing the g
voltage (Fermi level positionEF) would be as follows.
For EF , ´1 all four LS’s are empty. AtEF ­ ´1 the
first LS in the center of the triangle gets occupied. AsEF

reaches the valueEF ­ s´2 1 ´3 1 ´4 1 3V2 2 ´1dy2
an electron from the center moves to one of the verte
and two electrons arrive from the electrode and occ
two other vertexes. Finally atEF ­ ´1 1 3V1 the LS in
the center gets occupied again.

After realizing that double peaks are possible in pr
ciple, we turn to the question: how frequent are the
One could argue that double peaks are allowed only
extremely rare configurations that do not really occur i
finite-size sample. To answer this question we calcu
the probability that in a cluster of four LS’s the energ
and distances between LS’s are arranged in such a
that the two-electron tunneling becomes possible after
cluster is singly occupied. We start from the observat
that the previous consideration for restricted geome
becomes general if, instead of (9), we assume the m
“hard core” interaction between the LS’s:V srd ­ U for
r , d andV srd ­ 0 for r . d. It is important that the
interaction takes only two values:U and zero. Then
the above analysis for the equilateral triangle applie
the distances,rij , between the LS’s satisfy the followin
requirements:r12, r13, r14 , d and r23, r34, r24 . d. If
these requirements are met, the conditions for the dou
peak formation are given by Eqs. (5) and (6) withV1 ­
U and V2 ­ 0. It can be verified directly that fo
all other configurations of four LS’s double peaks a
forbidden. Then the calculation of the probability,P ,
of the occurrence of a double peak can be performe
the following way: we fix the position and the ener
of the first LS and find the allowed phase volume
1356
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the other three LS’s. The advantage of the “hard co
interaction is that the intergrations over coordinates a
energies are decoupled from each other. If we den
with g the density of LS’s, then the expression forP can
be presented asP ­ g3I1I2, whereI1 andI2 are the phase
volumes in the energy and coordinate spaces, respectiv

I1 ­
Z `

´1

d´2

Z `

´2

d´3

Z `

´3

d´4

3 us2U 1 ´1 1 ´2 2 ´3 2 ´4d
3 us´2 1 ´3 2 ´1 2 ´4d , (10)

I2 ­
Z

dr2

Z
dr3

Z
dr4 usr23 2 ddusr24 2 dd

3 usr34 2 ddusd 2 r12dusd 2 r13dusd 2 r14d .
(11)

The analytical evaluation of the first integral resul
in I1 ­ U3y3. The integralI2 is obviously proportional
to d6; the numerical factor was found using the Mon
Carlo procedure. Finally, we obtainP ­ 0.611sgUd2d3.
We see that the portion of double peaks is govern
by the dimensionless parametergUd2 which is the ratio
of the interaction energy and the mean level spac
within the size of the “core.”

It is apparent that for the realistic interaction (9) th
estimate forP emerges if one substitutes forU the value
e2ykd —the Coulomb interaction at distanced. This
givesP , sge2dykd3. To find the numerical coefficient,
the Monte Carlo integration over the nine-dimension
space (6 coordinates and 3 energies) was performed u
the program published in [6]. The program generated
random set of dimensionless (in the units ofd ande2ykd)
coordinates and energies, calculated the valuesE1

4 , E2
4, E3

4 ,
and then checked condition (1). The numerical fac
obtained iss5.1 6 0.1d 3 1022.

The calculation ofg poses a separate problem. On
approach to estimateg is to assume that the random
potential just smears the edge of the band density of st
g0 ­ myp h̄2. Then for energies not very deep in the ta
g is still of the order ofg0. The productg0e2dyk can be
rewritten asdypa0, wherea0 ­ h̄2kyme2 is the effective
Bohr radius. It may seem that, ifd is large enough, this
product could be much larger than 1. However, this
not the case, since with increasingd the interaction of
the occupied LS’s becomes important. This leads to
suppression of the density of states in the vicinity of t
Fermi level (Coulomb gap [7,8]). For the interaction (9
the energy dependence ofg was studied both analytically
[9] and by computer simulations [10]. It was shown th
gs´d ­ 0.085sdyke2d 1 s2ypd sk2j´ 2 EFjye4d. In our
problem the relevant energy scale isj´ 2 EF j , e2ykd
so that ge2dyk is of the order of 1. In view of the
ambiguity in g, our calculation can be considered on
as an estimate showing thatP is not small. Indeed,
the only small parameter inP is the numerical factor
0.051. This factor is, in fact, surprisingly large, takin
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into account that it emerged as a result of the ni
fold integration.

We have addressed only the energy aspects of
double-peak formation. There is also a question ab
the dynamics of the process. Suppose that the occupa
of a single-electron state requires a timet (t is inverse
proportional to the probability of tunneling). For a two
electron state with a binding energyW it can be shown
that this time increases dramatically and becomes of
order oft2Wyh̄. The reason for the enhancement is th
two electrons cannot tunnel sequentially because of
energy restrictions. However, if the temperatureT is
finite, the sequential tunneling becomes possible due
the smearing of the Fermi distribution in the electrod
Assume for simplicity that both single-electron energies
a two-electron state are the same. Then the time requ
for the sequential occupation of the two-electron state
equal tot expsWy2T d. This time is shorter thant2Wyh̄
if T . Wy2 lnsWtyh̄d.

Finally, let us discuss the magnetic field depende
of the double peaks. Note that conditions (5) and
(formation of a double peak) require the energies
all four LS’s in the cluster to be rather close (rough
speaking, they should lie within the interval of the ord
of e2ykd ). With increasingB each LS moves up in
energy. It is important that the rate of this motion
different for different LS’s. This is obvious if some o
the LS’s originate from donors, located in the well, wh
others represent the size quantization levels in the lat
fluctuations of the random potential [1,4]. Since the r
for donors is much slower, condition (1), met atB ­ 0,
will get violated at some criticalB due to the spread in
the level positions. For higherB the double peak will
split into two. Even in the case when all four compone
of the double-peak cluster atB ­ 0 are the ground state
in parabolic confinements, their energies will depart fro
each other with increasingB, thus causing a splitting
of the peak. If a confinement is characterized by
position of minimumU0 and the frequency of the zero
point motionv0, the behavior of the energy level withB
is given by ´sBd ­ U0 1 h̄sv2

0 1 v2
cy4d1y2 (vc stands

for the cyclotron frequency). Suppose that atB ­ 0 two
levels, ´1s0d and ´2s0d, are anomalously close in energ
(in order to participate in the cluster). This means that
sum U

s1d
0 1 h̄v

s1d
0 ­ ´1s0d is close toU

s2d
0 1 h̄v

s2d
0 ­

´2s0d, while separatelyU
s1d
0 and U

s2d
0 can differ, say, by

a factor of 2. But in a strong magnetic field we ha
´1sBd 2 ´2sBd ­ U

s1d
0 2 U

s2d
0 , so that departure is th

typical fate of the initially aligned levels.
Although double peaks atB ­ 0 disappear eventually

new double peaks may emerge with increasingB. Whether
this happens or not depends on how the density of L
within some energy interval changes withB. In the
simplest model, the radius of a state grows with its ener
Therefore, the higher in energy is the state, the faste
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shifts upwards withB. This leads to the depletion o
the “tail” of the density of states. The depletion, in tur
suppresses the number of the double-peak configurati
Experimentally, however, the LS’s have different origin
and their rates of energy shifts withB are widely spread.
In this situation any certain prediction on the evolution
the number of the double peaks withB is impossible.

In conclusion, we have demonstrated that dou
peaks in the differential capacitance may result fro
the interaction-induced correlations in the occupati
numbers of LS’s within a cluster. A more convention
consequence of these correlations is that addingone
electron to the cluster might cause a redistribution
neighboring electrons over the LS’s in order to reduce
total energy. This process is similar to the formation
a polaron by a lattice surrounding an LS. Note that su
a purely electronic “polaron” was studied intensively b
Efros and Shklovskii and by Pollak and Ortuño (see, e
the reviews [7,8]) in connection with the density of stat
and inelastic transport in the Coulomb glass. Making
link to these works, our main result can be reformulated
follows: for interactions which fall off steeply enough wit
distance, the formation of an “electronicbipolaron” in
certain compact clusters of LS’s is energetically favorab
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