
Fast Parallel PageRank: A Linear System Approach

David Gleich
∗

Stanford University, ICME
Stanford, CA 94305

dgleich@stanford.edu

Leonid Zhukov
Yahoo!

701 First Ave
Sunnyvale, CA 94089

zhukov@yahoo-inc.com

Pavel Berkhin
Yahoo!

701 First Ave
Sunnyvale, CA 94089

pberkhin@yahoo-
inc.com

ABSTRACT
In this paper we investigate the convergence of iterative sta-
tionary and Krylov subspace methods for the PageRank lin-
ear system, including the convergence dependency on tele-
portation. We demonstrate that linear system iterations
converge faster than the simple power method and are less
sensitive to the changes in teleportation.

In order to perform this study we developed a framework
for parallel PageRank computing. We describe the details
of the parallel implementation and provide experimental re-
sults obtained on a 70-node Beowulf cluster.

Categories and Subject Descriptors
G.1.3 [Numerical Analysis]: Numerical Linear Algebra;
D.2 [Software]: Software Engineering; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval

General Terms
Algorithms, Performance, Experimentation

Keywords
PageRank, Eigenvalues, Linear Systems, Parallel Comput-
ing

1. INTRODUCTION
The PageRank algorithm, a method for computing the

relative rank of web pages based on the Web link struc-
ture, was introduced in [25, 8] and has been widely used
since then. PageRank computations are a key component of
modern Web search ranking systems. For a general review
of PageRank computing see [22, 7].

Until recently, the PageRank vector was primarily used
to calculate a global importance score for each page on
the web. These scores were recomputed for each new Web
graph crawl. Recently, significant attention has been given
to topic-specific and personalized PageRanks [14, 16]. In
both cases one has to compute multiple PageRanks corre-
sponding to various teleportation vectors for different topics
or user preferences.

∗Work performed while at Yahoo!

.

PageRank is also becoming a useful tool applied in many
Web search technologies and beyond, for example, spam de-
tection [13], crawler configuration [10], or trust networks
[20]. In this setting many PageRanks corresponding to dif-
ferent modifications – such as graphs with a different level of
granularity (HostRank) or different link weight assignments
(internal, external, etc.) – have to be computed. For each
technology, the critical computation is the PageRank-like
vector of interest. Thus, methods to accelerate and paral-
lelize these computations are important. Various methods to
accelerate the simple power iterations process have already
been developed, including an extrapolation method [19], a
block-structure method [18], and an adaptive method [17].

Traditionally, PageRank has been computed as the prin-
ciple eigenvector of a Markov chain probability transition
matrix. In this paper we consider the PageRank linear sys-
tem formulation and its iterative solution methods. An ef-
ficient solution of a linear system strongly depends on the
proper choice of iterative methods and, for high performance
solvers, the computation architecture as well. There is no
best overall iterative method; one of the goals of this paper
is to investigate the best method for the particular class of
problems arising from PageRank computations on parallel
architectures.

It is well known that the random teleportation used in
PageRank strongly affects the convergence of power iter-
ations [15]. It has also been shown that high teleportation
can help spam pages to accumulate PageRank [13], but a re-
duction in teleportation typically hampers the convergence
of standard power methods. In this paper, we investigate
how the convergence of the linear system is affected by a
reduction in a degree of teleportation.

To perform multiple numerical experiments on real Web
graph data, we developed a system that can compute results
within minutes on Web graphs with one billion or more links.
When constructing our system, we did not attempt to op-
timize each method and instead chose an approach that is
amenable to working with multiple methods in a consistent
manner while still easily adaptable to new methods. An ex-
ample of this trade-off is that our system stores edge weights
for each graph, even though many Web graphs do not use
these weights.

The remainder of the paper is organized as follows. The
next section, PageRank Linear System, contains an analyt-
ical derivation of a linear system version of PageRank, fol-
lowed by discussion of numerical methods. We then pro-
vide details on our parallel implementation. The Numerical

Figure 1: Chart of computational methods

Experiments section contains experimental results including
timings of the iterative methods on various size graphs and
an analysis of error metrics.

2. PAGERANK LINEAR SYSTEM

2.1 PageRank Formulation
Consider a Web graph adjacency matrix A with elements

Aij equal to 1 when there is a link i → j and equal to 0 oth-
erwise. Here i, j = 1 : n and n is a number of Web pages.
For pages with a non-zero number of out-links deg(i) > 0,
the rows of A can be normalized (made row-stochastic) by
setting Pij = Aij/deg(i). Assuming there are no dangling
pages (vide infra) the PageRank x can be defined as a lim-
iting solution of the iterative process

x
(k+1)
j =

X
i

Pijx
(k)
i =

X
i→j

x
(k)
i /deg(i). (1)

At each iterative step, the process distributes page author-
ity weights equally along the out-links. The PageRank is
defined as a stationary point of the transformation from
x(k) to x(k+1) defined by (1). This transfer of authority
corresponds to the Markov chain transition associated with
the random surfer model when a random surfer on a page
arbitrarily follows one of its out-links uniformly.

The Web contains many pages without out-links, called
dangling nodes. Dangling pages present a problem for the
mathematical PageRank formulation. A review of various
approaches dealing with dangling pages can be found in [11].

One way to overcome this difficulty, is to slightly change
the transition matrix P to a truly row-stochastic matrix

P ′ = P + d · vT , (2)

where di = δ
deg(i)
0 is the dangling page indicator, and v is

some probability distribution over pages. This model means
that the random surfer jumps from a dangling page accord-
ing to a distribution v. For this reason vector v is called a
teleportation distribution. Originally uniform teleportation,
vi = 1/n, was used, but non-uniform teleportation received
much attention after the advent of PageRank personaliza-
tion [14, 16].

The classic simple power iterations (1) starting at an ar-
bitrary initial guess converge to a principal eigenvector of P
under two conditions specified in the Perron-Frobenius theo-
rem. The first condition, matrix irreducibility or strong con-
nectivity of a graph, is not satisfied for a Web graph, while

Method IP SAXPY MV Storage
PAGERANK 1 1 M + 3v
JACOBI 1 1 M + 3v
GMRES i + 1 i + 1 1 M + (i + 5)v
BiCG 2 5 2 M + 10v
BiCGSTAB 4 6 2 M + 10v

Table 1: Computational Requirements. Operations
per iteration: IP counts inner products, SAXPY
counts AXPY operations, MV counts matrix vector
multiplications, and Storage counts the number of
matrices and vectors required for the method.

the second condition, aperiodicity, is routinely fulfilled (after
the first condition is satisfied). The easiest way to achieve
strong connectivity is to add to every page, dangling or not,
a small degree of teleportation

P ′′ = cP ′ + (1− c)evT , e = (1, . . . , 1). (3)

where c is a teleportation coefficient. In practice 0.85 ≤ c <
1. After these modifications, matrix P ′′ is row-stochastic
and irreducible, and therefore, simple power iterations

x(k+1) = P ′′T x(k) (4)

for the eigen-system P ′′T x = x converge to its principal
eigenvector.

Now, combining Eq.(2 - 4) we get

[cP T + c(vdT) + (1− c)(veT)]x = x. (5)

Noting that (eT x) = (xT e) = ||x||1 = ||x|| (henceforth, all
norms will be assumed to be 1-norms) we can derive a con-
venient identity

(dT x) = ||x|| − ||P T x||. (6)

Then, Eq. (5) can be written as a linear system

(I − cP T)x = k v (7)

where k = k(x) = ||x|| − c||P T x|| = (1− c)||x||+ (dT x).
A particular value of k only results in a rescaling of x,

which has no effect on page ranking. The solution can always
be normalized to be a probability distribution by x/||x||.
This brings us to the point that equation (7) with a fixed k
constitutes a linear system formulation of PageRank. In the
future we simply set k = 1− c. We also introduce the nota-
tions A = I − cP T and b = k v = (1 − c)v, thus the linear
system under consideration has the standard form Ax = b.
The non-normalized solution to the linear system has an
advantage of depending linearly on the teleportation distri-
bution. This property is important for blending topical or
otherwise personalized PageRanks. For this linear system,
we study the performance of advanced iterative methods in
a parallel environment.

Casting PageRank as a linear system was suggested by
Arasu et al. [2] where Jacobi, Gauss-Seidel, and Successive
Over-Relaxation iterative methods were considered. Numer-
ical solutions for various Markov chain problems are also
investigated in [26].

2.2 Iterative Methods
The PageRank linear system matrix A = I − cP T is very

large, sparse and non-symmetric. Solution of the linear sys-
tem Eq. (7) by a direct method is not feasible due to the

Name Nodes Links Storage Size
edu 2M 14M 176 MB

yahoo-r2 14M 266M 3.25 GB
uk 18.5M 300M 3.67 GB

yahoo-r3 60M 850M 10.4 GB
db 70M 1B 12.3 GB
av 1.4B 6.6B 80 GB

Table 2: Basic statistics for the data sets used in the
experiments.

matrix size and computational recourses. Sparse LU factor-
ization [23] can still be considered for smaller size problems
(or subproblems), but it does create additional fill in. It is
also notoriously hard to parallelize.

In this paper we concentrate on the use of iterative meth-
ods [12, 3, 6]. There are two main requirements for the
iterative linear solver: i) it should work with nonsymmet-
ric matrices and ii) it should be easily parallelizable. Thus,
from the stationary methods we use Jacobi iterations (in
particular, since the matrix is strongly diagonally dominant)
and from the non-stationary methods we have chosen sev-
eral Krylov subspace methods. Figure (1) presents a chart
of the methods used in this paper.

Power iterations. Simple power iterations (4) are the
classic and the most widely used process for finding PageR-
ank. It has a convergence rate equal to c [15] (that is, the
second eigenvalue of the matrix P ′′). Computationally effi-
cient formulation of these iterations can be found in [25].

Jacobi iterations. The Jacobi process is the simplest
stationary iterative method and is given by

xk+1 = cP T · xk + b. (8)

Jacobi iterations formally result in the geometric series
x =

P
k≥0(cP

T)kb, when started at x0 = b and thus, also
have the rate of convergence of at least c. It is indeed equal
to c on graphs without dangling pages, in which case Jacobi
and power iterations are the same.

Krylov subspace methods. We also consider a set of
Krylov subspace methods to solve the linear system Eq. (7).
These methods are based on certain minimization proce-
dures and only use the matrix through matrix-vector mul-
tiplication. Detailed description of the algorithms are avail-
able in [6] and [4].

In this study we have chosen several Krylov methods sat-
isfying our criteria:
- Generalize Minimum Residual (GMRES)
- Biconjugate Gradient (BiCG)
- Quasi-Minimal Residual (QMR)
- Conjugate Gradient Squared (CGS)
- Biconjugate Gradient Stabilized (BiCGSTAB)
- Chebyshev Iterations.

The convergence of Krylov methods can be improved by
use of preconditioners. In this study we have used parallel
Jacobi, Block Jacobi and Adaptive Schwarz preconditioners.

In all of the above methods we start with initial guess
x(0) = v. Note that the norm of ||x(k)|| is not preserved
in the linear system iterations. If desired, one can nor-
malize the solution to become a probability distribution by
x(k)/||x(k)||.

The computational complexity and space requirements of
the above methods are given in Table (1).

2.3 Parallel Implementation
We chose a parallel implementation of the PageRank al-

gorithms to meet the scalability requirement. We wanted
to be able to compute PageRank vectors for large graphs
(one billion links or more) quickly to facilitate experiments
with the PageRank equation. To that end, our goal was
to keep the entire Web graph in memory on a distributed
memory parallel computer while computing the PageRank
vector. An alternate approach explored in [24] is to store
a piece of the Web-graph on separate hard disks for each
processor and iterate through these files as necessary.

Our parallel computer was a Beowulf cluster of RLX blades
connected in a star topology with a gigabit ethernet. We
had seven chassis composed of 10 dual processor Intel Xeon
blades with 4 GB of memory each (140 processors, and 280
GB memory total). Each blade inside a chassis was con-
nected to a gigabit switch and the seven chassis’ were all
connected to one switch.

The parallel PageRank codes use the Portable, Extensible
Toolkit for Scientific Computation (PETSc) [4, 5] to imple-
ment basic linear algebra operations and basic iterative pro-
cedures on parallel sparse matrices. In particular, PETSc
contains parallel implementations of many linear solvers,
including GMRES, BiCGSTAB, and BiCG. While PETSc
provided many of the operations necessary for working with
sparse matrices, we still had to develop our own tools to
load the Web graphs as parallel sparse matrices, distribute
them among processors and perform load balancing.

PETSc stores a sparse matrix in parallel by dividing the
rows of the matrix among the p processors. Thus, each
processor only stores a submatrix of the original matrix.
Further, PETSc stores vectors in parallel by only storing
the rows of the vector corresponding to the matrix on that
processor. That is, if we partition the n rows of a matrix
A among p processors then processor i will store both the
matrix rows and the corresponding vector elements. This
distribution allows us to load graphs or matrices which are
larger than any individual processor can handle, as well as
to operate on vectors which are larger than any processor
can handle. While this method allows us to work on large
data, it may involve significant off-processor communication
for matrix-vector operations. See [5] for a discussion of how
PETSc implements these operations.

Ideally, the best way to divide a matrix A among p pro-
cessors is to try to partition and permute A in order to bal-
ance work and minimize communication between the pro-
cessors. This classical graph partitioning problem is NP -
hard, and approximate graph partitioning schemes such as
ParMeTiS [21] and Pjostle [27] do not work well on such
large power-law data. Thus, we restricted ourselves to a sim-
plified heuristic method to balance the work load between
processors.

By default, PETSc balances the number of matrix rows
on each processor by assigning each approximately n/p rows.
For large Web graphs this scheme will result in a dramatic
imbalance among the number of non-zero elements stored
on each processor and often will result in at least one pro-
cessor with more than 4 GB of data. To solve this problem
we implemented a balancing scheme whereby we can choose
how to balance the data among processors at run-time. We
allow the user to specify two integer weights wrows and wnnz

and try to balance the quantity wrowsnp + wnnznnzp among
processors, where np and nnzp are the number of rows and

Figure 2: Load balancing experiment for “yahoo-r2”
graph.

non-zeros on processor p, respectively. To implement this
approximate balancing scheme, we always store entire rows
on one processor and keep adding rows to a processor and in-
crementing a counter until this counter exceeds a determined
threshold (wrowsn + wnnznnz)/p. Typically, we used equal
weighing between rows and non-zeros (wrows = 1, wnnz = 1).
Due to the large number of low-degree nodes in our power-
law dataset, this approximate scheme, in fact, gave us a
good balance of work and memory among processors.

3. NUMERICAL EXPERIMENTS

3.1 Data
In our experiments we used six Web related directed graphs.

The “av” graph is the Alta Vista 2003 crawl of the Web, the
largest dataset used in experiments. We also constructed
and used three subsets of “av” graph: the “edu” graph
containing web pages from the .edu domain; “yahoo-r2”
and “yahoo-r3” graphs containing pages reachable from ya-
hoo.com by following two and three in- or out-links. We also
used a Host graph “db” obtained from a Yahoo! crawl by
aggregation (a sum of) links between the pages within the
host. Finally, the “uk” graph contains only UK sites and
was obtained from [1]. Basic statistics for these graphs is
given in the Table (2).

3.2 Load Balancing Experiments
We have performed a set of load balancing experiments

with the goal to find the best matrix partition and node
distribution strategy that optimizes the algorithm perfor-
mance. Figure (2) shows the computational (run) time as
a function of number of processors for two load balancing
schemes. The upper curve corresponds to an equipartitioned
graph with n/p rows per processor, and the lower curve is
obtained using our load balancing method.

It is clear that for the equipartitioned distribution, in-
creasing the number of processors can lead to slower com-
putations due to significant communications overhead. Web
graphs contain clusters corresponding to blocks in the tran-
sition matrix. If the clusters are split naively over several
processors, it leads to diminishing performance.

0 5 10 15 20 25 30 35 40 45
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Error Metrics for BiCG Convergence

Iteration

M
et

ric
 V

al
ue

||x(k+1) − x(k)||

||A x(k) − b||

||x(k+1) − x(k)||/||x(k)||

Figure 3: Tracking all error metrics during conver-
gence on “db” graph for BiCG method.

It is also seen from the bottom curve that when the com-
munication and work load balance is approximately pre-
served, increasing the number of processors leads to a smaller
computation time, but that speedup curve eventually satu-
rates.

3.3 Equivalence of Metrics
When comparing the error among methods, we used ab-

solute error ||x(k+1)−x(k)|| for power iterations and normal-

ized residual error ||Ax(k)−b||/||x(k)|| for the linear systems.
These are the equivalent metrics as the following analysis
demonstrates. For a graph with no dangling nodes using
power iterations,

||x(k+1) − x(k)|| = ||cP T x(k) − x(k) + (1− c)v||, (9)

and using a linear system,

||Ax(k) − b|| = ||cP T x(k) − x(k) + (1− c)v||. (10)

However, since we do not enforce ||x(k)| = 1 for the linear

systems, we report ||Ax(k) − b||/||x(k)|| instead.
In Figure (3) we show the value of the above metrics, plus

relative error ||x(k+1) − x(k)||/||x(k)||, for a linear system
solved with the BiCG solver on the “db” Host graph. The
metrics follow the same behavior, with the residual slightly
more stable for some methods. Thus residual was used to
control and stop iterations when the desired tolerance was
achieved. The other error metrics are almost linearly scaled
because ||x(k)|| approaches a constant as k increases.

3.4 Convergence Experiments
We have performed multiple experiments on convergence

of the iterative methods on a set of graphs. We have studied
the rate of convergence, the number of iterations and total
time taken by a method to converge to a given accuracy.

The detailed results for all tested methods and graphs are
presented in Table (3). The quasi-minimum residual, conju-
gate gradient squared, and Chebyshev methods did not con-
verge on our data and we do not report additional results
on these methods. In the table, the first line for each graph
denotes the number of iterations required for each method

0 10 20 30 40 50 60 70 80
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration

E
rr

or

uk iteration convergence

std
jacobi
gmres
bicg
bcgs

(a) Convergence Iterations

0 5 10 15 20 25 30 35 40 45
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Time (sec)

E
rr

or

uk time convergence

std
jacobi
gmres
bicg
bcgs

(b) Convergence Time

Figure 4: Convergence of iterative methods on the “uk” Web graph.

0 10 20 30 40 50 60 70
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration

E
rr

or

db iteration convergence

std
jacobi
gmres
bicg
bcgs

(a) Convergence Iterations

0 200 400 600 800 1000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Time (sec)

E
rr

or

db time convergence

std
jacobi
gmres
bicg
bcgs

(b) Convergence Time

Figure 5: Convergence of iterative methods on the “db” Host graph.

Graph PR Jacobi GMRES BiCG BCGS

edu 84 84 21† 44∗ 21∗

20 procs 0.06 s 0.06 s 0.6 s 0.85 s 0.41 s
yahoo-r2 71 65 12 20 10

uk 73 71 22∗ 25∗ 11∗

60 procs 0.08 s 0.14 s 0.8 s 0.78 s 1.05 s
yahoo-r3 76 75
60 procs 2.4 s 2.2 s

db 62 58 29 45 15∗

60 procs 13 s 12 s 22 s 21 s 21 s
av 72 76 26

140 procs 30 s 30 s 60 s

Table 3: Timing Results. See discussion in text.

to converge to an absolute residual value of 10−7. The sec-
ond line shows the mean time per iteration at the given
number of processors. For the Krylov subspace methods,
no superscript means we used no preconditioner, whereas ∗
denotes a block Jacobi preconditioner and † denotes an ad-
ditive Schwartz preconditioner. We only report results for
the fastest (by time) method. All Krylov solvers failed on
“yahoo-r3” due to memory overloads on only 60 processors.

The convergence behavior of algorithms on “uk” and “db”
graphs is shown in Figures (4) and (5). In these figures,

we plot absolute error ||x(k+1) − x(k)|| for power iterations

and normalized residual ||Ax(k) − b||/||x(k)|| for the linear
systems.

Our analysis of the results shows that

• Power and Jacobi methods have approximately the
same rate and the most stable convergence pattern.
This is an advantage of stationary methods that per-
form the same amount of work per any iteration.

• Convergence of Krylov methods strongly depends on
the graph and is non-monotonic.

• Although the Krylov methods have the highest average
convergence rate and fastest convergence by number of
iterations, on some graphs, the actual run time can be
longer than the run time for simple Power iterations.

• BiCGSTAB and GMRES have the highest rate of con-
vergence and converge in the smallest number of iter-
ations, with GMRES demonstrating more stable be-
havior.

3.5 Convergence and Teleportation
We have performed several experiments to learn the de-

pendency of the convergence rate on the teleportation coef-
ficient c ≥ 0.85. The results are Figure (7). It shows that
when c = 0.99, power iterations were not able to obtain de-
sired accuracy within a large number of iterations. For the
values of c where each algorithm converges, the deteriora-
tion of convergence rate for the Krylov subspace methods
was much less pronounced than for simple power iterations.
In other words they are less affected by decreasing the tele-
portation level.

3.6 Experiment with the “av” Web graph
In this section, we discuss the results of our parallel linear

system PageRank on a full Web graph. We used a Septem-
ber 2003 crawl of the Web from Alta Vista with 1.4 billion

0 500 1000 1500 2000 2500
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

av time

Time (sec)

er
ro

r

std
bcgs

Figure 6: Convergence on the full “av” Web graph.

nodes and 6.6 billion edges. Other experiments with this
data have been done by Broder et al. [9]. Our main re-
sults on this graph are presented in Figure (6) and Table
(3). It presents performance of simple power iterations and
the BiCGSTAB method. For the linear system we show
the normalized residual error and absolute error for power
iterations.

A few tweaks were required to allow this large graph to
work with our implementation. First, equal balancing be-
tween nodes and edges is insufficient for such large graphs
and overloads the 4 GB memory limit on some nodes. Thus,
we attempted to estimate the optimal balance for the algo-
rithm. From Table (1), the PageRank algorithm requires
storing the matrix and 3 vectors. Since the matrix is stored
in compressed-row format with double sized floating point
values, PETSc requires at least (12·nnz+4n)+3·(8n) bytes.
Because there is some overhead in storing the parallel ma-
trix, we typically estimate about 16nnz total storage for the
matrix (i.e. 33% overhead). This yields a row-to-non-zero
distribution of approximately 2 to 1. Thus, for simple power
iterations we set wrows = 2 and wnnz = 1 for our dynamic
matrix distribution. A similar analysis for the BiCGSTAB
algorithm yields the values wrows = 5 and wnnz = 1.

It is reported in [9] that an efficient implementation of the
serial PageRank algorithm took 12.5 hours on this graph
using a quad-processor Alpha 667 MHz server. A similar
serial implementation on a 800 MHz Itanium takes approx-
imately 10 hours. Our implementation takes 35.5 minutes
(2128 secs) for PageRank and 28.2 minutes (1690 secs) for
BiCGSTAB on the full cluster of 140 processors (70 ma-
chines). These parallel run times do not include the time
necessary to load the matrix into memory as repeated runs
could be done with the in-memory matrix.

4. CONCLUSIONS
In this paper we have demonstrated that PageRank can be

successfully computed using linear system iterative solvers.
We have developed an efficient scalable parallel implemen-
tation and studied Jacobi and Krylov subspace iterative
methods. Our numerical results show that GMRES and
BiCGSTAB are overall the best choice of solution methods

Figure 7: Convergence at high c.

for PageRank class of problems and, for most graphs, pro-
vide faster convergence than power iterations. We have also
demonstrated that the linear system PageRank can converge
for much larger values of the teleportation coefficient c than
standard power iterations.

5. ACKNOWLEDGMENTS
We would like thank Farzin Maghoul for the Alta Vista

web graph, Alexander Arsky for the Host graph, Jan Peder-
sen, Gary Flake, and Vivek Tawde for help and discussions
and Yahoo! Research Labs for providing valuable resources
and technical support.

6. REFERENCES
[1] Webgraph datasets.

http://webgraph-data.dsi.unimi.it.

[2] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin.
PageRank computation and the structure of the web:
Experiments and algorithms. In WWW11, 2002.

[3] O. Axelsson. Iterative solution methods. Cambridge
University Press, New York, NY, USA, 1994.

[4] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. C. McInnes, B. F.
Smith, and H. Zhang. PETSc users manual. Technical
Report ANL-95/11 - Revision 2.1.5, Argonne National
Laboratory, 2004.

[5] S. Balay, V. Eijkhout, W. D. Gropp, L. C. McInnes,
and B. F. Smith. Efficient management of parallelism
in object oriented numerical software libraries. In
E. Arge, A. M. Bruaset, and H. P. Langtangen,
editors, Modern Software Tools in Scientific
Computing, pages 163–202. Birkhäuser Press, 1997.

[6] R. Barrett, M. Berry, T. F. Chan, J. Demmel,
J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. V. der Vorst. Templates for the
Solution of Linear Systems: Building Blocks for
Iterative Methods, 2nd Edition. SIAM, Philadelphia,
PA, 1994.

[7] P. Berkhin. A survey on pagerank computing.
Technical report, Yahoo! Inc., 2004.

[8] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks
and ISDN Systems, 33(3):107–117, 1998.

[9] A. Z. Broder, R. Lempel, F. Maghoul, and
J. Pedersen. Efficient pagerank approximation via
graph aggregation. In Proceedings of the 13th
international World Wide Web conference on
Alternate track papers & posters, pages 484–485. ACM
Press, 2004.

[10] J. Cho, H. Garćıa-Molina, and L. Page. Efficient
crawling through URL ordering. Computer Networks
and ISDN Systems, 30(1–7):161–172, 1998.

[11] N. Eiron, K. McCurley, and J. Tomlin. Ranking the
web frontier. In WWW13, 2004.

[12] G. H. Golub and C. F. V. Loan. Matrix computations
(3rd ed.). Johns Hopkins University Press, 1996.

[13] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen.
Combating web spam with trustrank. In 30th
International Conference on Very Large Data Bases,
pages 576–587, 2004.

[14] T. Haveliwala. Topic-sensitive pagerank, 2002.

[15] T. Haveliwala and S. Kamvar. The second eigenvalue
of the Google matrix. Technical report, Stanford
University, California, 2003.

[16] G. Jeh and J. Widom. Scaling personalized web
search. In WWW12, pages 271–279. ACM Press, 2003.

[17] S. Kamvar, T. Haveliwala, and G. Golub. Adaptive
methods for the computation of pagerank, 2003.

[18] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub.
Exploiting the block structure of the web for
computing pagerank, 2003.

[19] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub.
Extrapolation methods for accelerating pagerank
computations. In Proceedings of the Twelfth
International World Wide Web Conference., 2003.

[20] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The eigentrust algorithm for reputation management
in p2p networks. In Proceedings of the Twelfth
International World Wide Web Conference, 2003.

[21] G. Karypis and V. Kumar. A coarse-grain parallel
formulation of multilevel k-way graph-partitioning
algorithm. In Proc. 8th SIAM Conference on Parallel
Processing for Scientific Computing, 1997.

[22] A. N. Langville and C. D. Meyer. Deeper inside
pagerank. Technical report, NCSU Center for Res. Sci
Comp., 2003.

[23] X. Li and J. Demmel. Superlu dist: A scalable
distributed-memory sparse direct solver for
unsymmetric linear systems, 2003.

[24] B. Manaskasemsak and A. Rungsawang. Parallel
pagerank computation on a gigabit pc cluster. In
Proceedings of the 18th International Conference on
Advanced Information Networking and Applications,
2004.

[25] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library
Technologies Project, 1998.

[26] W. J. Stewart. Numerical methods for computing
stationary distribution of finite irreducible Markov
chains. In W. Grassmann, editor, Advances in

Computational Probability, chapter 4. Kluwer
Academic Publishers, 1999.

[27] C. Walshaw, M. Cross, and M. G. Everett. Parallel
dynamic graph partitioning for adaptive unstructured
meshes. Journal of Parallel and Distributed
Computing, 47(2):102–108, 1997.

