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The single hole spectrum e(k) of adjacent CuQ, planes is studied within a framework of a two-band model for small-radius
magnetic polaron. The Fermi level position relative to the magnetic Brillouin zone boundary depends strongly on the value of the
interplane hole hopping parameter 4 and the hole concentration x at small x. Within this approach a qualitative explanation of
the non-monotonic 7. behaviour as a function of concentration, pressure and number of adjacent CuO, layers in HTSC is given.

1. Introduction

It is well known that the temperature 7, of the su-
perconductive transition for the high-temperature
La,_,Sr,Cu0, superconductor depends non-mono-
tonically on the hole concentration x [1]. A similar
behaviour of T, as a function of x is observed in Y-
and Tl-based superconductors, such as YBa,Cu;0,_ s
and TISr,(Er, _,,S8r5,)Cu,0,,_;5 [2]. In addition, the
pressure dependence of T, shows a monotonic T in-
crease for HTSC with low carrier concentration in
the Y 1-2-3 and T1 1-2-1-2 systems and non-mon-
otonic behaviour with a maximum in the T.(P) curve
for samples with a high carrier concentration [3]. It
is also found that in TL,Ba,Ca,._,;Cu,0,,,4 com-
pounds the transition temperature 7, has a maxi-
mum as a function of n, where n is the number of
adjacent layers in a unit cell [4].

In the present paper we propose a qualitative ex-
planation for such T, behaviour which is based on
specific features of the hole spectrum E, in a frame-
work of the magnetic polaron approach. In order to
describe the hole motion in a single CuO, plane we
start with the two-band Hubbard model [5]. We also
assume the possibility of interplane hole hopping via
the neighboring O sites belonging to the adjacent

CuO, planes. The spectrum E, will be obtained by
using the variational method for hole wave func-
tions. As has been shown in ref. [6] for the case of
the Néel spin state of the Cu subsystem with the re-
alistic value of parameter J=~0.251, where J is the
constant of AFM Cu-Cu exchange coupling and 7 is

the effective hole hopping parameter, the excitation_

spectrum can be described correctly in the frame-
work of the theory of a magnetic polaron of small
radius. The hole spectrum depends essentially on the
behaviour of spin correlation functions in the Cu
sublattice. We consider the singlet ground state |G)
of the spin subsystem of the CuO, plane as the RVB
state, i.e. we assume that the spin correlation func-
tions (S% S, > have AFM character but possess
spherical symmetry, and the average Cu-site spin
projection {(Sg> =0, a=x, y, z; {(..>)=(G]...|G>
[7]. In the case of small doping our description re-
sults in the spectrum ¢, which has large parts of the
Fermi surface near the magnetic Brillouin zone
boundary, defined by the equation
7a= (cos(k,2a) +cos(k,2a))/2=0, where a is the
distance between Cu and O nearest-neighboring
(NN) sites in a CuO, plane (see fig. 1).

As is shown in ref. [8], the existence of the Fermi
surface sheets close to the corners X of the magnetic
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Fig. 1. The structure of the CuO, plane: O - Cu sites, @ ~ O sites,
4, and a, are the O-site vectors in the unit cell.

Brillouin zone y,=0 (see fig. 2(a)) is very impor-
tant for the problem of superconductivity because it
results in a large density of states on the Fermi sur-
face near the Van Hove singularities. Superconduc-
tivity arises owing to the nesting near X points which
stimulates strong anisotropy of the pairing interac-
tion. However, the superconductive state becomes
unstable with respect to the spin-density wave for-
mation, when the sheet of energy € reaches the line
7x+=0. This result gives the background for our main
qualitative assumption: the maximum value of 7
occurs when the Fermi surface reaches some optimal
surface of equal energy near the line 7,=0.

The paper is organized as follows. In section 2 we
introduce the effective hamiltonian and describe the
method and results of E, calculations. Section 3 con-
tains the discussion of the results and interpretation
of the experimental dependence of T, on concentra-
tion x, pressure P and the number of adjacent CuO,
planes n.

2. Model and method of spectrum calculations

We start with the effective hamiltonian for an ex-
tra hole in two CuQ, layers which is the simplest
generalization of the well-known two-band-one-layer
hamiltonian [5],

A=T+h, (1)
T= z RZ [z(1 _Jan,cz)+fl éal,az‘sal,—oz]
i Raia

(aj Ky

s
— - - =
——— =y

o,
N
~

Fig. 2. (a) The full and the reduced magnetic Brillouin zone fo
the CuO; plane. The equal energy lines for E; and E} =const
are represented schematically in the first and the second quad-
rant, respectively. The dashed line represents the bottoms of two
bands, lines y1.,; the solid line represents the lines of the Fermi
surface y ix, 3, 7 ¥, 73r; the dash-dotted line represents the equal -
energy line y, which determines the optimal condition for 7. (b)
The schematic dependence of the energies of two bands E ~ and
E* on y=(cos(2ak,) +cos(2ak,)) /2. The points 1-7 represent
the corresponding lines ¥ i, Y ia» P 3> Ymin» P iF» 73, % in fig. 2(a).
The doping level determines the chemical potential E.

gI102 +
X Zi,R i.R+a2,02 Ci,R+a1.al >

}‘l‘zh Z (CIr,aCZ,r,a"Fh.C.) s

i=1,2; a,a,=ta,, ta,;

t=13/¢, 1 =2/(e+U,);
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Here and below r=R+a are four vectors of O sites
pearest 10 the Cu site R; the operator C; creates a
hole with 2 spin index g=*1 at the O site and
/%a 18 the Hubbard projection operator which is in-
qroduced 10 exclude the doubly occupied states of Cu
ates: i=1. 2 stanc}s for the number of CuO; planes.

The first term T in eq. (1) describes the effective
hole hopping from O to O sites through the inter-
\cning Cu sites. It can be obtained within the per-
(urbation theory in t/e< 1 from the site hamilto-
wan which is characterized by the Cu and O hole
jevels €q and € (e=€,—€4>0), the NN Cu-O hop-
ping L. and the intrasite Hubbard repulsion energies
{,and Lo respectively [9].

Wwe take Ug=oco as the largest energy parameter.
The 0, #02 hopping terms in T describe a simulta-
neous spin flip of Cu and O holes.

The second term h in eq. (1) describes the hole
hopping between NN O-sites from different CuO,
planes. The planes under consideration have Cu (O)
sites one above the other.

we assume for the Hubbard model parameters the
incquality k<7, and take U,=0 because the results
are found to depend weakly on the value of this
parameter.

The hole excitation in the two-band Hubbard
model is known to form a magnetic polaron [5,10].
As we consider the hole excitation spectrum E (k) in
the approximation of a magnetic polaron of small
radius, the set of the site functions @; z is close to the
Zhang-Rice singlet [10]. The trial Bloch wave func-
tion ¥ should contain explicitly the wave function
|G of the Cu spin subsystem. For = +1 the func-
tion ¥, can be written as

Y= ;Meim(/’i,k, ¢i,R=¢:-R|G> » (2)

(Clrea+1 Zig —Cilrra—1Zik

a=tax,tax

We assume that state |G) of the Cu two-layer sub-
svstem is the singlet [7]. Using the singlet character
of the state |G) it is easy to find that $i,¢;x=
10,2 and S0, x =10, z, Where S is the spin op-
erator of the total system. The polaron spectrum E(k)
is obtained by the variational method with 4, as a
variational parameter. In the two-layer model we
have. obviously, 4, = tA,= 12712

The element of the secular matrix E(k) contains

two- and three-site Z-operator correlation functions.
Owing to the singlet nature of the ground state |G>
the matrix elements can be expressed in terms of the
pair spin correlations. For example,
(ZV k20 2T R Z TR v 20,0 = 1 (S r+2¢, SR+ 24,0 =
1C,. As in ref. [7], we also assume that in one layer
the pair site correlations between the second and the
third NN Cu spins coincide.

The explicit calculations lead to the following
expressions for two bands:

44y, -B(7i—-1) .
1+ Ay, ’

Ef =€, th; e=—41—

h |AY + A5 7]

hy =
x 1+A4y

(3)

where

A=4+C,, Ci= (S1rS 1 R+247 5

B=4(%+C2/2"C1) ; Go= <S1,RSl,R+2l|+2¢2> 5
1=31tC; Ci= {S1rS287 5

Ay=314+Cy; Ch=(S1rS2r+247 3

7% = (cos(2ak,) +cos(2ak,)) /2 ; (4)
For the undoped dielectric single-layer case which

is described usually by the Heisenberg model, dif-

ferent approaches lead to similar values for the state

correlations C;=—0.351; C,=0.213 [7]. Then

A= —0.101 and B=2.33. We use these values in nu-

merical calculations. The exchange interaction be-

tween adjacent layers is considerably less in com-

parison with the Cu-Cu intralayer interaction. That
is why we take [111]:

C,=0.1C;; C3=0.1C;. (5)

As concerns the parameter 4 in eq. (1), we rep-
resent numerical results corresponding to a=h/
t=0.01.

The E, expression for two layers can be easily gen-
eralized for three- and four-layer cases:

Ei=¢, &t ﬁhk, for three layers ;
Ex=€ct ((3£./5)/2)"/?hy, for four layers;  (6)

where ¢, and A, are the same as in eq. (3).
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3. Results and discussion

The lines y,=const are the lines of equal energy
for the upper E;f and lower E; bands of the spec-
trum (3). We introduce the notation y %, for the lines
corresponding to the EF band bottoms. These lines
and the spectrum E * (y) are shown schematically in
fig. 2(a). The important property of the EF spec-
trum is the location of the y L, line close to the mag-
netic Brillouin zone boundary y,=7,=0. This is the
consequence of the |G) state correlation functions
which give | 4| < | B|. This result seems to be an im-
portant property of the model. The constants 4 and
B describe the magnetic polaron hopping between
the first and the second NN sites, respectively. Ow-
ing to strong short-range AFM correlations the mag-
netic polaron moves mainly over one of the Cu mag-
netic sublattices, though there are no real sublattices
in Cu subsystem state |G ). For the case of the Néel
state Gy we have a similar situation, |A]=4-—
{SrSr+a> =0« B. However, for the Néel state the
spectrum E& must be symmetric with respect to the
magnetic zone boundary, unlike the case of a singlet
|G>. For the chosen values of C;/C; (5) the line
yria is always shifted to the point M relative to the
position of the line y,;, (see fig. 2(a)). This shift
depends on the parameter o =4/t and increases with
the increase of «.

We represent our numerical results for the suffi-
ciently small value of parameter a=0.01 (small val-
ues of a correspond to the most interesting case of
the two-band filling ). Figure 3 demonstrates the equal
energy lines for £ . The y;, is shown by the dashed
line with the energy E 5, = —4.597; hereafter we put
t=1. All other lines of equal energy on both sides of
Ymin correspond to the values Eg with the step
AE=0.03. The lines for the second band E;} have
the same form but these lines are shifted to the point
M. The characteristic spectrum E; along the prin-
cipal axes of the Brillouin zone is given in fig. 4.

The inset to fig. 5 represents the density of states
p(E) for both bands in a wide energy range. In fact,
the peak of the density of states has the fine structure
due to the Van Hove singularities near the bottoms
of two bands (square root singularities |y—
yhinl 72 and |7—75ia ] ~'/?) and near the corners
X of the magnetic Brillouin zone (saddle points with
the logarithmic singularities). These singularities of
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Fig. 3. Equal energy lines Eg =const for AE=0.03;a=h/1= ODi :
The dashed line y;, is the bottom of the lower band E5 . ’
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Fig. 4. The lower band E; spectrum along the principal axes '
a=0.0land r=1.

p(E) are shown in fig. 5. The peaks fop
E~(Ymin)=—4.597 and E* (yfin) = —4.593 corré®
spond to the bottoms of two bands. The third peakEr
E~(y)=-4584 and the fourth peak
E™* (y9)=—4.581 correspond to the X corners.

As « increases, the p(E) peaks F~ (yqin) and
E (7o) are seen to be shifted to the left and the peaks
E*(y%in) and E*(y) are shifted to the right rela-
tive to their position in fig. 5. For «>=0.03 the peak
of the E; band bottom crosses the position of the
right E; (75) peak.

As to the Fermi surface, there can be two different
situations depending on the values of the parameter
a=h/7 and the hole concentration x. Hereafter x is
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Fig 5. The fine structure for the bottom spectrum peak of the
density of states p(E). The position Eg corresponds to x~0.24.
Four subpeaks E£”(Ymin), E*(7min), E* (%), E~(¥) corre-
spond to the Van Hove singularities. Here t=1, a=0.01. The
\nset represents p(E) for the two bands EF in a wide range of

enCrRY.

the number of holes per Cu atom in the CuO, plane.
For small x or sufficiently large a the Ef band is
empty and the Fermi surface consists of two sheets
corresponding to the y ¢ and y3¢ lines, 1 > 73 (see
figs. 2(a) and (b)). For sufficiently large x or rather
small a<0.03, the holes fill the Ef band and two
additional Fermi sheets, y &, y7¢, appear (figs. 2(a)
and (b)). A

We discuss below the case of two partially filled
bands. From the point of view of the phase transi-
tions the most interesting situation takes place when
one of the Fermi sheets yi or y lies close to the
line 7. In this case, a detailed analysis of the super-
conducting properties in the weak coupling approx-
imation was given in ref. [12]. As can be seen from
fig. 2(b) in our model with x=0.24 and a=0.01,
the sheet yir is the closest to y, and, therefore, this
sheet is responsible for possible instabilities in this
svstem.

The proximity of ¢ to yo was used in ref. [8]. It
was shown that in this case the interaction between
the small radius polarons could result in a supercon-
ducting state with d- or s-pairing. The supercon-
ducting state arises owing to the strong anisotropy of
the pairing interaction. The main condition for su-
perconductivity is determined by two inequalities for
the i+ equienergy line [8]:

) N (Ua/DIn(1 /7)< 15 In(1/y7e)>15 (7)

where U,q is the constant of effective interaction be-
tween magnetic polarons. These inequalities permit
one to formulate a qualitative criterion of the opti-
mum conditions for superconductivity. The highest
value of the transition temperature 7, occurs when
the y;¢ sheet of the Fermi surface coincides with
some optimum line y, =7,, which lies close to the line
yo (see figs. 2(a) and (b)). In our analysis we put
y.=—0.042, and the correspouding energy equals
E;(y,)=—4.586 at a=0.01. As the hole concentra-
tion x increases the sheet y ; moves from the bottom
line yoin to the line y,. We denote by x, the hole con-
centration for which sheet y ;& crosses the line y,. The
calculation gives x,=0.24. So, in the framework of
our criterion the transition temperature T as a func-
tion of the hole concentration x increases up to
x,=0.24 and for larger doping x> x, the transition
temperature decreases.

Now we discuss the influence of changing the pa-
rameter « or 7 on the position of y i with respect to
the line y.. For fixed and small x the increase of pa-
rameter « results in a shift of y;, and consequently
y1r towards the line y,. If x is sufficiently small, the
sheet y1x(Xg, @) lies far enough from y,, and the sheet
y1¢ does not cross y, at any a. This means that T, is
a monotonic function of a. But, for the case of large
doping (x=0.2), the same « increase is enough for
y£ and y, to cross. This situation corresponds to the
passage of the superconductive transition tempera-
ture through the maximum.

The dependence of the lattice constants and bond
lengths on hydrostatic pressure for 1-2-3 HTSC
compounds [ 13] indicates that the interplane com-
pressibility is smaller than the intraplane one. This
means that the effect of hydrostatic pressure should
lead to increasing parameter «.

So, we obtain that the experimental 7, depen-
dence on the hole concentration x= (0.5-46)/2 and
pressure P for YBa,Cu;O,_; should be qualitatively
described by the following expression:

Tczﬂo—ﬂl(y}?(xaa)—%)z’ (8)

where f; and §, > 0 are the fitting parameters. In par-
ticular, we suppose that zero pressure corresponds to
a=0.005, and the concentrations x=0.03 and x=0.2
lead to the critical temperatures 7.=62 K and 7.=90
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K, respectively. Then we obtain the coefficients:
Bo=91 and f,=4.4x 10*. The resulting dependence
of critical temperature 7. on the parameter « is
shown in fig. 6 together with the experimental data
T.(P) for compounds YBa,Cu,0,_; with §=0.1 and
9=0.45 [14]. As can be easily seen, the experimen-
tal results qualitatively coincide with the calculated
T, dependence.

For Tl-based compounds the critical temperature
T. dependence on n, the number of adjacent CuQO,
layers in a unit cell, has a maximum at n=4 [4]. It
follows from eq. (5) that increasing n at fixed hole
concentration x results effectively in the enhance-
ment of parameter » and, thus, a. For the typical
values x=0.2 and «=0.01 we obtain a similar de-
pendence T.(n) as in ref. [4].

In the framework of our main approximations, i.e.
small polaron radius and 7, maximum criterion
based on the inequalities (7), the above-discussed
T, behaviour as a function of x, & and n holds true
in a wide range of the parameters involved. The val-
ues a>0.03 result only in the lower band filling for
x~0.25. As a result the Fermi line y {7 crosses y, at
a lower concentration of holes and 7, maximum oc-
curs at x,<0.24. The increase of the relation
C}/C; leads to the increase of x,.

These results are still valid if we extend the set of

]
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100 + +
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Fig. 6. The T, dependence on « in the approximation: T, = f, —
Bilyr(x,a)~7,)%, a=001 and (a) x=0.2, (b) x=0.03. The
experimental points of T, dependence on P are taken from ref.
[15] for the superconductors YBa;Cu;0;. s with: @ -5=0.1, &4
-3=0.44,

the chosen trial site functions ¢, ¢ (2) by involving :
the additional functions Clgi. 1G> ana
C iR+dy,+1 i G>

In conclusion, we note that it is commonly ac.
cepted that the superconductivity in YBa,Cu;0,_,
and YBa,CuOyg depends on charge transfer phenom.
ena [15]. The displacement of the apical oxygen at.
oms to the CuQ, planes under pressure is associated
with the hole transfer from the chains to the CuQ,
planes, i.e. with the increase of concentration x. The
pressure-induced changes of T based on the charge
transfer assumption do not contradict our theory. The
additional x increase changes the relative yix and y,
position in the same way as the parameter A doeéi
Thus, we can take into account the x-transfer s:mply_z
by rescaling the parameter A dependence on pressurgﬁ’
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