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Soft Clustering with Projections:
PCA, ICA, and Laplacian

David Gleich and Leonid Zhukov

Abstract— In this paper we present a comparison of
three projection methods that use the eigenvectors of a
matrix to investigate high-dimensional dataset: principal
component analysis (PCA), principal component analysis
followed by independent component analysis (PCA+ICA),
and Laplacian projections. We demonstrate the application
of these methods to a sponsored links search listings
dataset and provide a comparison of the results both
by examining the qualities of the projected dataset and
looking at the topics represented by each soft cluster.

Index Terms— PCA, ICA, Laplace Projection, Cluster-
ing

I. I NTRODUCTION

As computers have become ubiquitous in society, the
amount of data available has increased enormously. One
of the most useful ways of analyzing a dataset is to
describe the clusters in the data, that is, grouping of
the data elements which are related by some criteria.
More recently, sparse high-dimensional datasets have
been used to examine both textual data [1] and Internet
page ranking [11].

In this paper, we consider clustering with three differ-
ent eigenprojection methods: principal component analy-
sis (PCA) [7], principal component analysis with further
independent component analysis (PCA+ICA) [9], and
Laplacian projections (e.g. spectral clustering) [5]. Each
method uses the eigenvectors of a matrix to extract
information that facilitates identifying each data point
with a similar set of points. We present results from
these methods on a several artificial test datasets and
an advertiser-bidded keyword dataset from a pay-for-
performance search engine listing market.

Spectral methods for data analysis use the eigenvectors
of a data matrix. For example, PCA uses the eigenvectors
of a covariance matrix to compute a set of important
directions (e.g. tendencies) within the data. These direc-
tions can then be used to visualize the data [4], reduce
the dimension of the dataset, or extract semantic infor-
mation [6]. However, on certain datasets, PCA projection
will miss clustering behavior, e.g. Figure 1(c).
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More recently, Laplacian projections, which use eigen-
values of the Laplacian graph, have been used to approx-
imateNP -complete problems in graph partitioning [5].
When applied to graphs from textual data, the results are
clusters of similar terms [2]; on graphs from pixel corre-
lation maps in images, the results are similar segments of
the image [12]. Laplacian projections have the property
that they separate dissimilar element, which makes them
suited for these tasks.

The strength of all spectral methods is that the eigen-
vectors depend upon the entire dataset, and thus, spectral
methods are powerful global analysis techniques. How-
ever, different spectral algorithms have their own (and
quite different) properties, so they must be used with
care. In the remainder of the paper, we first present the
details of the datasets we use to examine each of the three
clustering methods. Then, we explain the three clustering
algorithms as applied to our high-dimensional dataset.
We finish with a discussion of our observations from
each method and a summary of our conclusions.

II. DATA

In this study, we use series of artificial datasets to
demonstrate the differences between the three meth-
ods as well as a small, densely connected subset of
Overture’s United States advertiser-term data with 9,352
advertisers, 14,385 bidded search terms, and more than
250,000 bids.

The three artificial data matrices are in two dimensions
and have two general “clusters” of data. Each cluster is
generated by a normal distribution of 1000 points and
then scaled or translated to separate the clusters. The first
dataset has two clusters aligned with the horizontal and
vertical axes. The second dataset has one cluster aligned
with the horizontal axis and another cluster slightly
shifted off the vertical axis. The third dataset has two
horizontal clusters translated in the vertical direction.

Our representation for bidding data is a advertiser-term
matrix, A, whose columns correspond to bidded search
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(a) A good PCA dataset. (b) A good ICA dataset. (c) A good Laplacian projection dataset.

Fig. 1. Examples of PCA, PCA+ICA, and Laplacian projections on a set of artificial data designed to highlight the differences between
the methods. In the first figure, PCA correctly identifies the orthogonal axes. In the second figure, PCA cannot correctly identify the axes
because they are not orthogonal; however, when ICA is applied after PCA, the ICA algorithm can determine the correct axes of the data. In
the final figure, applying PCA causes the clusters to collapse onto the horizontal axis. Instead, the first Laplacian projection separates the
two clusters.

keywords and rows to advertisers.1 Each non-zero entry
in the matrix has the value of the advertiser’s bid on that
particular term. Thus, every row of the matrix shows a
bidding pattern for an advertiser. Any bidded term, i.e
column of the matrix,ti can be considered as a vector
(data point) in the advertiser space. This matrix is strictly
non-negative and is also sparse, since the majority of the
advertisers bid only on a small number of terms.

Interestingly, the data has a power law distribution in
both the number of bids on each term, and the total
value of bids on that term. Figure 5 confirms these
observations.

III. M ETHOD

In this section, we present the three algorithms we
used to cluster our high-dimensional dataset.

A. PCA

Principal component analysis uses the eigen-
decomposition of the correlation matrixM = AAT to
find orthogonal directions with total maximal variance
of projections,MU = ΛU . PCA sorts the axis of the
reduced dimensionality basis according to the total
variance of the projection and retains thek largest
axes, thus removing redundancy and reducing the
dimensionality of the data. PCA can also be calculated
using the singular value decomposition ofA [8]. The
columns ofU form an orthogonal basis in term space,
and the columns of V form an orthogonal basis in

1Our definition ofA is transpose of that typically used in latent
semantic indexing literature [6], where columns correspond to doc-
uments and words (terms) to rows. Latent semantic indexing is the
term for PCA applied to histograms of textual data. We choose our
form since we are interested in terms behavior and not advertisers.
Both representations lead to the same results.

advertiser space. Since we are interested in term space,
we will perform projection of a transposedAT matrix
onto V basis byV T

k AT .

Xk = S−1
k V T

k AT = UT
k

The covariance matrixXkX
T
k ≈ I is diagonal, that is,

the projection axes are uncorrelated with equal variance.2

The matrixXk is also an optimal reduced dimensional
representation of the term vectors fromA, in the least-
squared distance sense.

B. PCA+ ICA

Independent component analysis finds a set of direc-
tions in the data such that when the data points are
projected onto these directions, the resulting data are
statistically independent(a much stronger condition that
uncorrelated). Unlike PCA, these directions need not be
orthogonal within the original space.

We start with PCA “sphered” results from the previous
section XkX

T
k = I. We then employ FastICA [10]

algorithm to reconstruct a matrixW such that,

Yk = WXk,

where the rows ofY are statistically independent, and
Xk is the reduced dimensional representation of the
terms from PCA. Thus, after the PCA “sphering” proce-
dure, an ICA algorithms only needs to adjust the axes.

C. Laplace projections

Laplace projections are defined by analogy with graph
partitioning techniques [2], [5]. We define a diagonal

2Due to the sparsity and high dimensionality of the data the row
mean is already close to zero, and we chose not remove the mean
from the data.
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degree matrixDii =
∑

j Mij
3, where as beforeM =

AAT is the correlation matrix. Then, the correspond-
ing Laplacian matrix is given byL = D − M . The
coordinates of data points in the reduced representation
can be found as solution (eigenvectors) of the following
generalized eigensystem,

(D −M)x = λDx.

This eigensystem corresponds to normalized cuts cri-
terion in graph partitioning [12]. Due to the algebraic
properties of the above system,λ1 = 0 and x1 is
constant. We use the remaining eigenvectors,x2, x3, . . .
as projection axes.

IV. RESULTS

We first present the results on a series of artificial
datasets designed to highlight the differences between
the two methods. We then examine the three methods
applied to the advertiser-term dataset.

On the artificial data, the differences between the
methods are extreme. Figure 1 demonstrates how each
method behaves on artificial archetypal datasets. From
these datasets, we see how each method, in theory,
works as a clustering tool. PCA finds the two orthogonal
clusters; PCA+ICA finds the two non-orthogonal clus-
ters; and Laplacian projections finds the two separated
clusters.

When we apply these three methods to our advertiser-
term dataset, we see similar phenomena. Thus, as seen
from the forthcoming figures, the advertisers tends to
exhibit grouping behavior in their bidding patterns, i.e
form clusters corresponding to sub-markets. When we
examine the data with PCA, we see these groupings
along the axes, Figure 2. But at the same time PCA
enforces orthogonality of the clusters, while the sub-
markets formed by advertisers are not necessarily un-
correlated. ICA relaxes that restriction and allows the
axes to adjust to follow the clusters, Figure 3. Then, in
ICA space, points are nicely aligned along the axis and
have strong projection only on one of the axis.

When we apply Laplacian projections to the data, we
see that the data points group into four to five distinct
clusters, Figure 4. By segmenting the dataset based on
these values, we then achieve a hard clustering of the
data, that is, each datum is in one and only one cluster.
For PCA and PCA+ICA, if we view each axis as a
cluster, then a data point may belong to many clusters,
i.e. has a strong projection on many axes. In this sense,
PCA and PCA+ICA is a soft clustering of the data.

3For unweighted graphs, this matrix would have node degrees on
the diagonal.

We can further examine the properties of the soft
clustering induced by PCA and PCA+ICA by attempting
to label the axes in the manner of Booker et. al. [4].
The topic of the axis, or cluster, is identified using the
terms with maximal projection on that axis. Table I and II
shows the identity of the top three clusters for both PCA
and PCA+ICA. We can use these terms to show the
real-world benefit of PCA+ICA, compared with PCA.
In Table III we show the terms for similar clusters from
PCA and PCA+ICA. The PCA cluster appears to mix
two separate clusters; whereas the PCA+ICA cluster is
much cleaner. This observation reinforces T

V. SUMMARY AND CONCLUSIONS

We analyzed the properties of three spectral pro-
jection clustering algorithms on data from a pay-for-
performance advertising market. The direct spectral
methods are powerful techniques to both reduce the
dimensionality and extract the structure from a dataset.
However, the orthogonality constraint imposed with PCA
is too restrictive to permit an accurate solution of the
data. The PCA+ICA algorithm uses PCA to extract the
important structure and then ICA relaxes the orthogo-
nality constraint to better align with the clusters on each
axis. Laplacian projections work by finding a projection
of the data that separates the classes as much as possible.

We conclude that PCA+ICA is the best method to
generate soft clusters from individual data points and
that Laplacian projections are superior when there are
unambiguous clusters within the data.
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TABLE III

A COMPARISON OF THEPCA AND ICA CLUSTERS.

PCA Axis 31/50 ICA Axis 28/50
book sport book internet sport

book internet sport baseball betting
card credit offer gambling sport

apr card credit low betting online sport
best card credit football wagering
baseball betting
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(a) Top 10 axes.
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(b) Top 2 axis.

Fig. 2. PCA projections. In the first figure, we plot each data point by its projection on each of the top 10 PCA axes. The second figure
is an enlarged version of the dataset projected onto the top 2 PCA axes. Since some of the axes are rotated, PCA was not able to find a
completely orthogonal transformation of the dataset.
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(b) Top 2 axis.

Fig. 3. PCA+ICA projections. In the first figure, we plot each data point by its projection on each of the top 10 ICA axes. The second
figure is an enlarged version of the dataset projected onto the top 2 ICA axes. Most of the data points have a strong projection on only one
axis.
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Fig. 4. Laplace projections. In the first figure, we plot each data point by its projection on each of the top 10 Laplace projection axes. The
second figure is an enlarged version of the dataset projected onto the top 2 Laplace projection axes. These projections emphasize clustering.
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(a) Number of bids
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(b) Net term value

Fig. 5. Two different power law relationships in our dataset. The left figure shows the rank-ordered plot of total term bids, i.e. the number
of advertisers bidding on the term. The right figure shows the rank-ordered plot (different ordering) of the total monetary value of each term,
i.e. the sum of all advertiser bids on that term. In both figures, the axes are logarithmic.

TABLE I

TERMS WITH MAXIMUM PROJECTION ON THE TOP3 PCA AXES.

PCA Axis 1/50 PCA Axis 2/50 PCA Axis 3/50
austin hotel best hosting service web pharmacy phentermine

beach hotel myrtle company hosting web cheap phentermine
albuquerque hotel affordable cheap hosting web online phentermine

hotel reno domain transfer diet phentermine bill
atlanta hotel cheap domain hosting buy online phentermine

TABLE II

TERMS WITH MAXIMUM PROJECTION ON THE TOP3 ICA AXES.

ICA Axis 1/50 ICA Axis 2/50 ICA Axis 3/50
car insurance business ecommerce internet solution diego lodging san

car insurance quote ecommerce page solution web cheap diego hotel san
auto free insurance quote development ecommerce page webanaheim discount hotel

auto insurance ecommerce provider solution francisco lodging san
automobile insurance ecommerce host coronado hotel


