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Abstract

With the aid of a tight-binding model of the electronic band structure on a
sq (two-dimensional) lattice we investigate the range of parameters for which
the lattice spontaneously distorts. Dimerization is found to occur only very
close to half-filling, and never exceeds 2.2%. Even at precisely half-filling, the
energy gap caused by the distortion does not extend all way around the fermi
surface, hence there is no insulating phase in this model.

We consider spontaneous symmetry-breaking in a simplified model of two-dimensional
metals.

This phenomenon was first studied by Pierls® in 1D, with the conclusion that for filling
factor v near tol/2 the homogenous phase is unstable with respect to the dimerized phase. At
other filling factors,there could be found instability against incommensurate phases, tuned
to 2kr. Much has been made of this in connection with the properties of one dimensional
polyacetylene? . In 3D the role of distortion in the metal-insulator phase transition has
been known for a long time.’However, in 2D the phenomenon has received scant atten-
tion despite the fact that van Hove similarities render the half filled two-dimensional band
uniquely susceptible to distortion. The tetragonal-to-orthorhombic distortion observed in
numerous high-temperature supeconductors, for which electronic conductivity is principally
two-dimensional and anisotropic even within each plane,brings back to the fore what might
otherwise be just an academic exercise.

Our model is a sq metal lattice on which electrons "hop” between nearest neighbors, and



which distorts as a consequence. We ignore the spin of the electron and the kinetic energy of
the ions, both irrelevant to present arguments. Our purpose is to investigate conditions at
T = 0 under which the lattice dimerizes, thereby spontaneously lowering both its symmetry
and its energy. In our model the maximum distortion turns out to be some 2.2% ,which is
quite in line with experimental observation. In the distorted phase we determine that the
electronic dispersion is anisotropic,but always metallic for surprisingly,when an energy gap
appears it does not extend over the entire fermi surface.

Some sort of restoring forcers (parameter K) are needed to keep the bond length at some
optimal value ( all ¢,,, = t,). Although the restoring force is ineffectual against rhombic
and/or shear distortions, the omission is insignificant for present purposes. With hopping
restricted to n.-n. sites, the simplest electronic Hamiltonian with which to demonstrate the

Pierles’ instability takes the form:
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with (n,m) labeling n.-n. pairs of sites. aside from the electronic filling factor v there
is just one dimensionless coupling constant, the ration v = K/ty . It is convenient to set
tam = to(1 — Enm)With &, the fractional elongation of the bond connecting the neighboring
atoms at R,, and R,,, and rewrite (1 ) in dimensionless form:
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This is essentially the ”lattice” Hamiltonian studied by Su,Schrieffer and Heeger? in 1D,
who assumed an additional condition: } &,,, = 0 - tantamount to assuming a fixed ab initio
value for the average spacing. while the 2D analysis could also start here it is perhaps more
instructive to examine the model in the absence of any constraints. We find that unless v
exceeds a critical value the model lattice collapses. Once 7 is sufficiently large to prevent
this collapse the maximum distortion is limited to a maximum of 2.2%, as mentioned earlier.
The limitation would not have been apparent had we merely adopted (2) together with the

SSH condition as the starting point.



Our first result: the trivial choice &,,,is never the ground state. Suppose &, = —(c+Ynm )
with ¢ a constant and y,,,an arbitrary distortion orthogonal to c(i.e: CY Ynm = 0). Then
(2) takes the form:
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Optimizing with respect to c yields:
c= —— E < afa, > 4
N n o ( )

which is a positive number ~ v/y for v < 1/2 and (1 — v)/y for v > 1/2. Thus in
the absence of any additional constraints the partly-occupied lattice always shrinks from its
pre-assigned value so as to maximize the electronic bonds. Equilibrium is determined by
the magnitude of 7, which is what limits the shrinkage.

In the absence of any additional; distortion the maximum value of the r.h.s. of Eq(4) (
for v = 1/2) can be calculated exactly, and is (0.2026..)/y. If v < 0.2026 the shrinkage of
the bond length amounts to a nonsensical 100%. This sets the scale for the allowed values
of v. In a nonlinear model, say one which exhibits exponential dependence of the overlap
parameter on the bond length, the results are qualitatively,if not quantitatively, similar.

Hence we assume v > 0.2026 and c in the range: 0 < ¢ < 1. H can be rewritten in the

form:
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allowing to define a distortion Hamailtonian,

Hyist = —————=— Y (14 Cwm)afan + 5 > o7, (6)

where 2, = Yum/(1 + ¢) and c fixed at its optimal value, Eq(4). This is the starting
point of our study. The filling factor v and stiffness coefficient @ = (1 + ¢) are the only
parameters. Eq( 6) is essentially similar to Eq(2), except for the stability requirement that

~v > 0.2026. We examine the consequence below.



We next seek to optimize the total distortion energy by adjusting the 2/NV values of the

distortion field z,,, subject only to Y. z,, = 0. This defines a "bond problem”®. Two
simple,homogeneous phases suggests themselves as prime candidates near v = 1/2:
1. Rectangular:all z,,,’s = z along the horizontal axis,all z,,,’s = —x along the vertical

;0T Vice-versa.

2. Dimerized: z,,, = +z if R,,, = (£1,0) or (0,£1) and R,, = (2p, 2q), where p,q are
integers.

Although there may exist other phases which lower energy even further,for example
incommensurate phases with pitch precisely tuned to 2k, we have been unable to identify
any. What is more, the value of 2kr is not known in the presence of distortion - it is only the
total area below the Fermi surface which is fixed and the geometry of the perimeter itself.
This soon become obvious when we plot contours of constant energy.

Phase 1 is obvious whereas phase 2 is somewhat unusual. It is therefore exhibited in Fig.1.
The optimum z must be determined numerically. Our calculations reveal the rectangular
phase always to be unstable against the dimerized phase, therefore phase 1 drops out and
in the rest of the work we need consider only phase 2.

In phase 2 , the Bloch energies are E(z | k) = +/(w} + 2277, where wy, = cosk, + cos k,
and v, = sink, + sin k,%. Note the resulting dispersion differs significantly from what would
be obtained by using a constant matrix element to couple opposing flat portions of the
Fermi surface. Fig.2 showing the contours of constant energy F.(z | k) at value z = 0.5,
illuminates the electronic anisotropy caused by dimerization of this lattice. Note that the
energy gap appears only along the (1, 1) direction, not along the (1,—1) axis. A similar plot
at a more realistic z = 0.02 would exhibit qualitatively similar features. However, these
could not be seen on the scale of this graph even lying in though the conduction properties
at a Fermi surface near £/ = 0 would remain anisotropic.

The total distortion energy per site’ is:
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where

1
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n(z | k) =

is the occupation number ( Fermi function) and p is the chemical potential required to
achieve the specified filling factor. Fig.3 illustrates the band structure,again choosing an
exaggerated value of distortion to render the features readily visible. note the total absence
of an energy gap along X N while an important gap opens up at 90°,along X M.

The actual value of z is obtained by optimizing the free energy. As a result ether x =0

trivially, or else z is the solution of the following transcendental equation:
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At T = 0,n(z | k) reduces to the unit step,i.e. n=1for E — u < 0 and n = 0 otherwise.
Remaining at 7" = 0, we find this equation has a nontrivial solution for v lying in the
range v, to 1 — v.. The critical filling factor v, is a function of a. As shown in Fig.4 the
transition to a distorted phase is continues at v, for all & > 0.465, e.i. it is second order. For
a < 0.465 it becomes discontinues ( first order ). This identifies o, = 0.465 as a tricritical
point. We determine that it lies very close to instability point identified earlier. For a = a.
and v = 1/2 the lattice compression parameter computed from Eq(4) is substantial: ¢~ 0.8
. Decreasing a by any significant amount would cause lattice collapse. as noted earlier. For
this reason we believe the parameter range a < a. to be unphysical or on the verge of it,
and restrict further consideration to the range a > a.. Here the distortion z is a continues
function of the two independent parameters and, by extension, of temperature 7" as well.
At precisely a. the critical filling factor v, = 0.493. The maximum distortion which
occurs at half-filling, v = 1/2, is Zyax = 0.012. This translates to a physical fractional
distortion in the amount: Y., = 0.012 x (1 +¢) = 0.022,i.e. 2.2% as stated in introduction.
As «a is increased, the maximum distortion decreases while the corresponding v, ap-
proaches v = 1/2. For example we see in Fig.4 that an increase of o from 0.465 to 0.487

causes Tnax to decrease by 25%, from 0.012 to less than 0.009. Although seemingly small,



a O(1%) distortion is in fact typical of experimentally observed maximum deviation of the
atomic positions from their ideal values in all materials, whether they be molecules,planar
solids,or fully three-dimensional crystals.

In concluding, we remark that while the calculations have been limited to the ground
state, at T' = 0,simple mean-field theory can be used to extend results to finite temperature
and yield familiar universal curves for (7). However, mean-field theory is notoriously
unreliable in 2D. It is possible that topological defects enter into, and vastly complicate,the
statistical mechanics at finite 7" and the phases of lowest free energy are highly textured, in
contrast to the ground state. To proceed it is necessary to determine the symmetry class of
the Hamiltonian. However,it is not clear whether H is discrete ( two possible directions of
distortion enter into the picture) or continues ( as in the shape of the Fermi surface). Finite

T properties in 2D hinge on such "details”. We intend to reexamine this issue in the future.
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S typically more structered than a ”site problem”

® this choice is one of two; the other equivalent (but orthogonal) phase has ;, = sin k, —sin k.
Thus if these were the only two possible phases one would expect twinning - just as found

in some high-temperature superconductors.*

" as there are 2 bonds per site, one divides here by 2N
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FIG. 2. Contours of constant energy,showing anisotropy. ( This picture
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FIG. 3. Some symmetry points in Brillouin Zone, and the band structure (E4) along the varios
axis connecting them. The energies are computed for a value of distortion parameter = 0.1. Note

the anisotropic energy gap which is zero along XY, and nonzero along X M.
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FIG. 4. Distortion parameter x as a function of filling factor v for various values of the elastic
parameter a, at 7' = 0. The points shown have been found by numerical solution of Eq(8). The

cross-over from continous ( as for o = 0.487) to reentrant behavior ( as for o = 0.450) occurs at

o, = 0.465.
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