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Abstract

Dirac fermions on a two-dimensional lattice are considered. Hopping in-
tegrals are chosen to be random and describe random velocity v(z,y) slowly-
varying along the plane. We demonstrate that low-lying excitations of the sys-
tem correspond to the “edge-states” propagating along the lines v(z,y) = 0.
The dispersion law of these excitations is found to be E(k) « 1/|In(kd)],
where d is the lattice constant. Similarly to the conventional edge states in
the quantum Hall systems, there is no back-scattering for electrons propagat-
ing along the zero-velocity lines. But in contrast to the motion in magnetic
field the transverse size of the wave function is on the order of k! and goes
to infinity as E approaches zero. Applications of the results to the realistic

two-dimensional systems with random spin-orbit coupling are discussed.
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Dirac fermions have recently attracted a lot of attention in connection with the integer
quantum Hall effect (QHE) and high temperature superconductivity (HTSC).

In the context of QHE spinless Dirac fermions allow to model the “edge” states, which
describe unidirectional propagation of electrons in a magnetic field. The analogy arises from
the situation when the mass of a fermion (originating from the Zeeman effect) varies along
some direction and passes through zero. Then the eigenstates of Dirac’s fermions represent
the so called “snake states” propagating along the line M = 02

One of the proposed mechanisms for HTSC in oxide superconductors is a d-wave pairing.
In the absence of impurities the Hamiltonian of the tight-binding model on the square lattice

can be easily diagonalized in the momentum representation and yields an energy spectrum

Ek) = :I:Zt\/ cos? kg + cos? k,. This model produces doubled Dirac fermions located at the
points k = (m/2,+n/2)%. The absence of a real gap within this model is considered to
be a crucial distinguishing feature of the d-wave superconductivity. However, if disorder is
present, it can result in existence of localized states around zero energy and thus mimic the
activation behavior. This would make the d-wave superconductors experimentally indistin-
guishable from the BCS?. This, hence, makes it very important to investigate the effect of
disorder on Dirac fermions®.

The first study of low energy region of Dirac fermions with disorder was carried out by
P.A. Lee in 1993%. It was followed by the numerical study by Hatsugai and Lee3. The types
of disorder considered in those papers were either “white noise” or short-range impurity
potential. The results of*3 support the proposal of localization effects in a gapless d-wave
superconductor.

Historically 2D massless Dirac fermions appeared in the paper M. P. A. Fisher and E.
Fradkin®, who considered spinless tight-binding model with the nearest neighbors hopping
and a half flux quantum (“m flux”) per plaquette. The authors used the disorder in the
form of random potential and came to the conclusion that it would lead to a finite density of

5,7,8)

states at zero energy (this conclusion is still a subject of a controversy . However, at that

time the model® was considered primarily of theoretical interest, since its direct realization



required very high magnetic fields ~ 10°G.

In connection with QHE the conventional type of disorder considered is a random mag-
netic field together with a random impurity potentiall. With this type of disorder included,
Dirac fermions describe the transition between different quantum Hall states and are rel-
evant to the problem of impurity driven transition between quantum Hall plateaus®. The
current focus of interest is multifractal behavior of Dirac fermion’s eigenfunctions!® 3.

Another plausible realization of Dirac fermions is a 2D electron gas in semiconductor
heterostructures. Consider an electron with a spin moving in the plane which is a boundary
between two layers, so that there exists a gradient of the potential in the direction perpen-
dicular to the plane. The origin of the gradient is either an asymmetry of the confinement
potential'?, or “two-dimensionalizing” of the bulk periodic potential’®>. In this particular
realization the disorder results from the inhomogeneity of VU.

The conventional way to investigate the role of disorder is to choose it in the form of a

” This choice offers obvious advantages in terms of numerical computations.

“white noise.
However, the qualitative picture in this approach is missing. It is well known that in order
to get an insight into the structure of electronic states, one should resort to the case of a

smooth disorder!”. The above argument was a motivation for our research.

To be specific, consider the Rashba-Bychkov Hamiltonian'*

H = alk x ojn = 0 alktik) (1)

a(ky — iky) 0
where parameter o has a meaning of velocity and varies smoothly with coordinates. Here
k = (kg, k,) is in-plane momentum, o are the Pauli matrices and n is a normal to the plane.
From the first glance, we might assume that locally the spectrum has the form E(k) = +a |k|

with a local value of & = a(z,y). Then the density of states for the entire system can be

readily obtained by averaging over all possible configurations of «

1 1 r|E|
(p(B)) =~ [ po(B,0)f(a)da = — [ = f(a)da, 2)
where p(E,a) = |E|/ma? is the density of states for clean Dirac fermions and f(«) is the
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distribution function of the velocity a. As one can see the density of states computed in
this way diverges in the regions where o ~ 0 for all values of E. From here we conclude
that the regions where a changes sign are very important and require further investigation.

This investigation is carried out in the next section.

I. DIRAC FERMIONS WITH VARYING VELOCITY

In the vicinity of the contour line a(z,y) = 0, o changes in the direction perpendicular
to the contour and its spatial dependence can be linearized. We specify « in the form
a(z,y) = yz, so it passes through zero at # = 0. The Hamiltonian for the varying velocity
case can be obtained from (1) by adding a commutator of 1[a, k] to the Hamiltonian. This
commutator is nonzero, since now « depends on z. Adding the commutator to (1) insures

the hermicity of the Hamiltonian. Then it takes the form

. 0 v + vk, +’ya:a%

H= (3)

—%V-l-'yxfcy—'yx% 0
Since Hamiltonian does not depend on y, the wave vector k, is a good quantum number,

and we can search for the solution in the form

U(z,y) = . E ; exp(ikyy). (4)

Upon substitution of (4) into (3) we get the following system of equations

1 dv
E¥y = 57T +yaky Ty + ’y:cd—;
1 d¥,

Expressing one function through the other, the system (5) can be reduced to a single equa-

tion:

d2‘112 2d‘112+ (1 €2+1/4

: S48 ), =
dz? z dz z+ 22 ) 2 =0, (6)



which has a form of a radial Schroedinger equation with an effective potential
1 e2+1/4
U(z,s)z—(;-l—T/). (7)
Here z = k,z and ¢ = E/v are the dimensionless coordinate and energy respectively. At
small distances U(z) is an attractive potential, which means that an electron is attracted to
the = 0 boundary line.

Note that Eq. (6) formally coincides with the Schroedinger equation for an electron in
hydrogen atom with “Coulomb ” 1/p and “centrifugal” I(I + 1)/p? terms. However in our
case the corresponding “angular momentum” [ = 1/2 4 ie appears to be complex. Following
the procedure described in'® we can estimate the asymptotics of the solution for small values
of z in the following way.

Let us choose some point 2y within a small vicinity of the origin. Within the region
z < zy we substitute (2 + 1)/2? by (¢2 + 1)/22. Then we can find the wave function inside
this region and outside it. Then we can match the wave functions with their derivatives at
the boundary z = zp. For z < zy Eq. (6) takes the form

d2\112 2 d\I’Q i 82 + %
dz? z dz 22

¥, =0, (8)

yielding the nondiverging solution in the origin

sin(2 /(€2 + %))

z

U, =C 9)

For z > 2z, we look for the solution of Eq. (6) in the form ¥, = 2°. This leads to the

following quadratic equation for s

1
s(s+1)+52+1:0, (10)

which has two complex-conjugate roots:

- il
§1 = ——
1 5 1\€
1
82=—§—i|€|. (11)



Thus for ¥, we have
U, = A2°' + Bz™. (12)
Equating logarithmic derivatives at the boundary z = z; we solve for the ratio

B 8§1—82
1= const x zg' 2. (13)

The real solution for small values of z will be

Uy(z) = const cos(|e| ln(i) + const). (14)

\/E 20

Substituting ¥, back into the system (14) we find ¥,

U1 (2) = % Gin(le| In(Z) + const). (15)

Vz <0

The choice of the constant phase in ¥; and ¥, is dictated by the condition that ¥ has

to be zero at z — oo. In principle, the solutions of Eq. (6) can be expressed through
hypergeometrical function and have the asymptotic behavior ~ e* and e™* at large z. The
phase constant should be chosen in such a way that the coefficient in front of e* vanishes.
We can avoid dealing with hypergeometric function by considering the limit as ¢ — 0. In

this limit the system (5) decouples and has an obvious solution

1
U = —exp(kyz),z <0
atd
1
Uy = —exp(—kyz),z > 0. (16)

VT
Then in order for (14) and (15) to satisfy the limiting case (16), the phase constant should
vanish at ¢ — 0. This means, that in both (14) and (15) the phase constant can be combined
with zg.
This solution (14) is plotted in Fig. 1. From this solution we can immediately see that the
wave function does not have a z — 0 limit: oscillations increase in amplitude and frequency
as z decreases. This behavior suggests that we need to introduce some cut-off parameter in

the problem.



Let us denote the cut-off distance with d. Quantization of levels in a potential well
corresponds to the change of argument of the cos in Eq. (14) by ~ 7 between turning points.
In our case the turning points are z ~ 1 (external) and z ~ k,d (internal). Thus, Eq. (14)
allows us to conjecture the form of the dispersion law E(k,) for the wave propagating along

the boundary.

‘E| C1
el =

0% In(cp/kd)’ (17)

where ¢; and ¢y are constants of the order of 1. The spectrum (17) is depicted in Fig. 2.

The energy goes to zero at small k,, and has an infinite derivative at the origin.

II. NUMERICAL RESULTS

The natural way to introduce a cut-off parameter in the problem is to reformulate it on

the lattice. Then the discretized Schroedinger equation on the lattice with spacing d takes

the form:
Eanm = cabn1m + Cniiby iy + %(cn + cnt1) (bnmi1 + bom—1)
B = Catin-1an + 1817 = 5+ ns1) (s + Gnn-1). (19)
with
an = ¥y(nd), b, = ¥s(nd), c, = a(nd). (19)

Following the above consideration we look for the solution in the form:

n

A
Upn = M+ exp(ikmd). (20)

I

n

After substituting (20) into (18) we arrive at the following matrix equation

A A
E _| @ , (21)

B Q2 0 B



which can be easily solved numerically. Here, A and B are column vectors, and (); and Q>

are tridiagonal matrices.

(Ql)n,n—l = _(Q2)n,n—1 = —Cp
(Q1)n,n = (Q2)nn = (cn + cpy1) sin(kd) (22)

(Ql)n,n—l—l = _(QZ)n,n+1 = Cp+1-

Note that this system decomposes into two subsystems - one for vector A and one for
vector B. Then we have Q;Q2A = E?A and Q,Q,B = E?B. For each eigenvalue we have a
trivial double degeneracy corresponding to electron and “hole” states, with energies +F.

To solve the system numerically we have to specify c,. First we consider the above case
a = vz, thus choosing ¢, = ynd. It is easy to see, that for this particular case the equations
for n > 0 and n < 0 become independent, indicating that the solutions are localized either
to the left or to the right from the boundary line (this is true for any case when boundary
line goes through the lattice site).

In Fig. 3 we show these states. The three lowest branches of the energy spectrum for
eigenstates of (21) are plotted in Fig. 4.To test our conjecture (17) we plot 1/|E(k,)| as
a function of In(k,). Eq. (17) provides a perfect fit for the numerical results: we observe
that all branches of the spectrum became straight lines. Surprisingly, the linear dependence
holds for kd up to 1, though for the estimate of the dispersion law (17) we used a much
stronger assumption of kd < 1. Using the slope of the lines we can find the corresponding

coeflicients in (17)

¢y = 1.5883, ¢y = 4.2879
¢y = 4.7649, co = 4.2879 (23)
C1 = 79492, Co = 4.2879.

We also note that within the accuracy of our computations ¢, is a constant.

Now, since we know the spectrum, we can calculate the density of states. In the region

where o does not go over zero, we still can replace o by a constant local value and get
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_ 1Bl
ma2’

p(E) (24)

However, in the vicinity of the boundary line, where o changes sign, we should use the new

dispersion law (17). Then, for our model with ¢, = ynd we obtain:

p(B) = L 8(E — B(ky)) = -5 exp(— 7o) (25)

Eq. (25) describes a one-dimensional density of boundary states, which vanishes in a singular
fashion when E — 0.

Next we address the following question. Will the boundary states we found persist for
saturating a(z), as the realistic dependence a(z) should eventually saturate with increasing
distance from the boundary? To study this question we choose ¢, = ymod tanh(nﬂo), SO
that oy = nd. It is obvious that the system (21) has a continuous spectrum, similar to
that of a(z) = a(co) = const. We show the numerical results in Fig. 5. As can be seen,
the discrete spectrum does survive the saturating behavior of a(z). The uniqueness of the
situation presented in Fig. 5 is that the discrete spectrum coexists with continuum for the
same values of energy. Discrete states do not decay into continuum as they have a much
higher momentum k, than allowed for continuum state kymaz = E/00o = E/yned. The
separation line between the continuum and discrete parts of the spectrum is E, = ynok,d.
Compare to the case of ¢, = yn the spectrum “softens”at small k,. Instead of the singular
behavior E ~ ln_l(%y) we have an acoustic like spectrum at small k,, with a derivative
restricted by the slope of separation line yny.

The physical picture of this state is the following: the continuum spectrum is formed by
the plane waves propagating in all directions. Discrete corresponds to the boundary states

that are localized within a region around the line o = 0 and can propagate only along this

line.



III. ABSENCE OF BACK-SCATTERING

The most remarkable property of the boundary states is the absence of back-scattering.
Consider a short range impurity located close to the boundary a(z) = 0. Usually, as, say,
for waves propagating within a quantum wire, the impurity will cause a finite reflection of
the wave with momentum £, into the wave with —k,. This conventional wisdom does not
apply to the boundary states of Dirac fermions described above. The propagating boundary
state will not “notice” the impurity and will not suffer any back-scattering. This happens
because the matrix element for reflection is identically zero. It follows from the general

property that for arbitrary a(z), if

Wy () .
¥, (z,y) = exp(ikyy). (26)
Uy ()
is a solution of the system, then
Us(z) .
U_, (z,y) = exp(—iky,y). (27)
—\I’l(.’L')

is also a solution, so that ¥, and ¥_, are orthogonal to each other at any point.

IV. TWO-BOUNDARY STATES

Since the size of the wave functions is ~ 1/k, it drastically increases with decreasing F
(as exp(%‘)). This means, than at low enough energies (for k < 1/ngd) the wave functions
of neighboring boundary states start to overlap and form pairs. The next step towards
understanding the global structure of boundary states of the Dirac fermions in a random
system is to consider a pair of boundaries. We may expect the existence of states belonging
to both boundaries. The question of interest is the evolution of their dispersion law with
distance between boundaries. Then at low energies the entire system will consists of pairs
of boundary states so that the spectrum and density of states for the entire system can be

computed from the spectrum of a single pair.
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To model a pair we choose ¢, in the form

—vyngdtanh(2(n — ny)/ny),n >0
| medranbe(n =)/ o5
ynod tanh(2(n +ny)/n1),n < 0

where n; determines the position of the boundaries. Since each boundary line goes through
the lattice sites, the wave function on the left side is independent from the wave function
on the right side for each boundary. This means that there exists a state “locked” between
boundaries. The example of such a state is shown in Fig. 6. Contrary to the hybridization
of states in two potential wells, these states are neither symmetric nor antisymmetric.

The energy spectrum of a pair can be computed using (22) the same way as above. In
contrary to a single boundary case, there appears to be a finite gap at small energies. The
width of the gap depends on the distance between boundaries and decreases with increasing
the distance. The gap in the spectrum shows that the density of states vanishes at zero
energy.

The crucial question is, can a spectrum of a pair for the varying distance between bound-
aries be described by a universal formula? It is obvious that a large k, the spectrum should
have the shape given by Eq. (17), though at small k, it should saturate. The crossover value

is ky ~ 1/nid. Thus, if the universal expression exists, it should have the following form

g1
B g F (kmd) k) 2

where F' is some universal function and g;/n = ¢, g2 = ¢ comes from the single boundary
case. The numerical computation should be carried in the following way. If F' exists, then all
the branches for different distances between boundaries should collapse on the same curve
after the proper rescaling of the axis. We present such a function in Fig. 7. For comparison,

we also show Fig. 8, where scaling is missing.
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FIG. 1. Wave function for small values of z
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FIG. 2. The three lowest branches of energy spectrum for the eigenstates ,a = yzx
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FIG. 3. Eigenfunctions of the lowest energy level for k, and —k,
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FIG. 4. Numerical fit to the asymptotic formula : solid line - asymptotics,stars - numerical

values
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FIG. 5. Low energy part of the spectrum for @ = ytanh(z/zo). Discrete spectrum on this

figure coexist with continuum. The separation line is E, = ynokyd
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FIG. 6. Wave function of a pair of boundaries for k, and —k,
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FIG. 8. Universal scaling function F' from Eq.
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