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ABSTRACT
In this paper we investigate the numerical and parallel per-
formance of linear algebra algorithms when applied to power
law data typical for information retrieval. In particular, we
report on the behavior of parallel numerical algorithms ap-
plied to computing the PageRank vector for a 1.5 billion
node directed web graph. We also describe the details of
our parallel implementation that was able to compute the
PageRank vector for this web graph on a distributed mem-
ory 140 processor RLX cluster in under 6 minutes.

Categories and Subject Descriptors
G.1.3 [Numerical Analysis]: Numerical Linear Algebra;
D.2 [Software]: Software Engineering; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval

General Terms
Algorithms, Performance, Experimentation

Keywords
PageRank, Eigenvalues, Linear Systems, Parallel Comput-
ing, Power Law, Distributed Memory, Sparse Matrix, Web
Graph

1. INTRODUCTION
Historically, much of the work in parallel computing has

been focused on the numerical solutions of problems aris-
ing from the engineering and physical sciences. The typical
goal is to numerically solve a problem formulated in a con-
tinuous domain using an appropriate discretization. The
discretization process usually results in two or three dimen-
sional meshes. For convenience of further discussion we will
consider these meshes as a special case of undirected graphs.
The graphs used in these problems are either regular, e.g. a
grid, or have slight variance in the number of nearest neigh-
bors and distance to nearest neighbors compared with the
average value. Most of the widely used parallel computing
toolkits are devoted to solving such problems and follow this
paradigm.

∗Work performed while at Yahoo!

Numerical problems arising in data mining and informa-
tion retrieval have quite different properties. First, the data
is already discrete and there is no continuous representation
possible. Thus, we have no ability to choose a discretization
level and control the size of the computation. Second, there
is no low-dimensional space easily associated with the data,
thus algorithms that make use of the physical location of
the elements are unusable, e.g. non-algebraic multi-grid al-
gorithms. Nevertheless, the majority of the data can be rep-
resented as a graph. Datasets such as document collections
and customer transactions can be represented as bipartite
graphs. Also, the web graph is a directed graph, and so
we will focus on graph properties to characterize the data.
The third and most important difference from standard sci-
entific computing datasets is the presence of a power law
distribution in the graph. A power law graph is defined by
the property that the number of vertices with degree k is
proportional to k−β for the power law exponent β. In such
a graph there are a few vertices with extremely high degrees
and many vertices with low degrees. For example, in a web
graph, the in-link degrees vary from 10,000, for sites like
Yahoo and CNN, to 1, for most personal home pages.

The graphs arising in communication networks, social net-
works, biology networks, and text databases all have the
power law property. One of the properties of a power law
graph is that the average distance between nodes is small [9].
Another term widely used for a power law graph is a scale-
free network [2]. Finally, some power law graphs also display
the small-world phenomenon, for example, the social net-
work formed by individuals. The small-world phenomenon
can be interpreted as a power law distribution combined
with a local clustering effect [10]. These two properties,
small average distance and local clustering, are very differ-
ent from the regularity of finite difference or finite element
graphs.

In this paper, we investigate the use of existing parallel
computing tools and their behavior on these new power law
graphs. In particular, we will focus on web graphs and a
parallel PageRank computation. This computation has the
additional property that it uses a directed graph and non-
symmetric matrix.

To perform multiple numerical experiments on real Web
graph data, we developed a system that can compute results
within minutes on Web graphs with one billion or more links.
When constructing our system, we did not attempt to op-
timize each method and instead chose an approach that is



amenable to working with multiple methods in a consistent
manner while still easily adaptable to new methods. An ex-
ample of this trade-off is that our system stores edge weights
for each graph, even though many Web graphs do not use
these weights.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the PageRank vector and two formulas
to compute it. Section 3 discusses our distributed memory
parallel implementation of PageRank and methods for dis-
tributing power law graphs. Section 4 describes the datasets
used in the experiment and elaborates on the known struc-
tural properties of web graphs. Our results in Section 5
are divided into results on the convergence of the PageRank
problem and the performance of the parallel computation.

2. PAGERANK
The PageRank algorithm, a method for computing the

relative rank of web pages based on the Web link struc-
ture, was introduced in [25] and has been widely used since
then. The PageRank model involves a directed graph of
links (edges) between web pages (nodes), a teleportation co-
efficient c, and a teleportation vector v. One interpretation
of a page’s PageRank is the probability of finding a random
surfer on that page when the surfer randomly follows links
between pages and restarts at a page in v with probability
(1 − c)vi. PageRank computations are a key component of
modern Web search ranking systems. For a general review
of PageRank computing see [21].

Until recently, the PageRank vector was primarily used
to calculate a global importance score for each page on
the web. These scores were recomputed for each new Web
graph crawl. Recently, significant attention has been given
to topic-specific and personalized PageRanks [15, 17]. In
both cases one has to compute multiple PageRanks corre-
sponding to various teleportation vectors for different topics
or user preferences.

PageRank is also becoming a useful tool applied in many
Web search technologies and beyond. For example, spam
detection [14] and trust networks [19] all use PageRank-
style calculations. In this setting many PageRanks corre-
sponding to different modifications – such as graphs with
a different level of granularity (HostRank) or different link
weight assignments (internal, external, etc.) – have to be
computed. For each technology, the critical computation
is the PageRank-like vector of interest. Thus, methods to
accelerate and parallelize these computations are important.

Traditionally, PageRank has been computed as the princi-
ple eigenvector of a Markov chain probability transition ma-
trix using a simple power iteration algorithm. Various meth-
ods to accelerate the simple power iterations process have
already been developed, including an extrapolation method,
a block-structure method, and an adaptive method. See the
general review [21] for additional details on these methods.

In this paper we consider the PageRank linear system for-
mulation [3] and iterative methods for its solution. An ef-
ficient solution of a linear system strongly depends on the
proper choice of iterative method and, for high performance
solvers, the computation architecture as well. There is no
best overall iterative method; one of the goals of this paper
is to investigate the best method for the particular class of
problems arising from PageRank computations on parallel
architectures.

2.1 PageRank Algorithm
In this section, we present the mathematical formulation

of PageRank both as an eigen-system and as a linear system.
Consider a Web graph adjacency matrix A of size n by n
with elements Aij equal to 1 when there is a link from URL
i to URL j and equal to 0 otherwise. Here i, j = 1 : n
and n is a number of distinct URLs or pages. For pages
with a non-zero number of out-links deg(i) > 0, the rows
of A can be normalized (made row-stochastic) by setting
Pij = Aij/deg(i). Assuming there are no dangling pages
(vide infra) the PageRank x can be defined as a limiting
solution of the iterative process

x
(k+1)
j =

∑
i

Pijx
(k)
i =

∑
i→j

x
(k)
i /deg(i). (1)

At each iterative step, the process distributes page author-
ity weights equally along the out-links. The PageRank is
defined as a stationary point of the transformation from
x(k) to x(k+1) defined by (1). This transfer of authority
corresponds to the Markov chain transition associated with
the random surfer model when a random surfer on a page
arbitrarily follows one of its out-links uniformly.

The Web contains many pages without out-links, called
dangling nodes. Dangling pages present a problem for the
mathematical PageRank formulation. A review of various
approaches dealing with dangling pages can be found in [11].

One way to overcome this difficulty, is to slightly change
the transition matrix P to a truly row-stochastic matrix

P ′ = P + d · vT , (2)

where di is the dangling page indicator, di = 1 if page i
is dangling and 0 otherwise, and v is some probability dis-
tribution over pages. This model means that the random
surfer jumps from a dangling page according to a distribu-
tion v. For this reason vector v is often called a teleportation
distribution. The original PageRank authors used uniform
teleportation vi = 1/n, but acknowledged that other choices
were possible. Later authors [15, 17] showed that certain
choices of v led to topic-specific and personalized PageRank
vectors.

The classic simple power iterations (1) starting at an ar-
bitrary initial guess converge to a principal eigenvector of P
under the two conditions specified in the Perron-Frobenius
theorem. The first condition, matrix irreducibility or strong
connectivity of a graph, is not satisfied for a Web graph,
while the second condition, aperiodicity, is routinely fulfilled
(after the first condition is satisfied). The easiest way to
achieve strong connectivity is to add a small degree of tele-
portation to every page.

P ′′ = cP ′ + (1 − c)evT , e = (1, . . . , 1)T (3)

where c is a teleportation coefficient. In practice 0.85 ≤ c <
1. After these modifications, the matrix P ′′ is row-stochastic
and irreducible, and therefore, simple power iterations

x(k+1) = P ′′T x(k) (4)

for the eigensystem P ′′T x = x converge to the principal
eigenvector with eigenvalue 1. Equation 4 is the eigensystem
formulation of the PageRank problem.

Now, combining Eq.(2 - 4) we get

[cP T + c(vdT ) + (1 − c)(veT )]x = x. (5)



Using (eT x) = (xT e) = ||x||1 = ||x|| (henceforth, all norms
will be assumed to be 1-norms) we can derive a convenient
identity

(dT x) = ||x|| − ||P T x||. (6)

Then, Eq. (5) can be written as a linear system

(I − cP T )x = k · v (7)

where k = k(x) = ||x|| − c||P T x|| = (1 − c)||x|| + (dT x).
A particular value of k only results in a rescaling of x,

which has no effect on page ranking. The solution can always
be normalized to be a probability distribution by x/||x||.
The non-normalized solution to the linear system has the
advantage of depending linearly on the teleportation vector.
This property is important for blending topical or otherwise
personalized PageRanks.

Casting PageRank as a linear system was suggested by
Arasu et al. [3] who considered the Jacobi, Gauss-Seidel,
and Successive Over-Relaxation methods.

2.2 Numerical Solution

2.2.1 Eigenvector: Power Iterations.
As previously mentioned, the standard way of computing

PageRank is to look for the dominant eigenvector of P ′′T

with eigenvalue 1. Using the identity in equation 6 we can
derive a more efficient algorithm to compute P ′′T x,

P ′′T x = cP T + (1 − c||P T x||)v, (8)

which gives rise to the standard PageRank algorithm [25].

x(0) = v
repeat

y = cP T x(k)

γ = 1 − ||y||1
x(k+1) = y + γv

until ||x(k) − x(k−1)||1 > δ.

The convergence of this algorithm is proportional to the
second eigenvalue. For the matrix P ′′, Haveliwala showed
that the second eigenvalue λ2 ≤ c, so power iterations con-
verge with speed c [16]. We do not consider more advanced
methods for computing the eigenvector such as ARPACK [22]
because non-dominant eigenvectors are often complex val-
ued for non-symmetric matrices, which significantly increases
the computational difficulty.

2.2.2 Linear System: Iterative Methods
The PageRank linear system matrix A = I−cP T is large,

sparse and non-symmetric. Solution of the linear system,
Eq. (7), by a direct method is not feasible due to the ma-
trix size and computational recourses. Sparse LU factor-
ization [23] can still be considered for smaller problems (or
subproblems), but it does create additional fill in. It is also
notoriously hard to parallelize.

In this paper we concentrate on the use of iterative meth-
ods [13, 6]. There are two requirements for the iterative
linear solver: i) it should work with nonsymmetric matri-
ces and ii) it should be parallelizable. Because the matrix
is strongly diagonally dominant, we use stationary Jacobi
iterations. Additionally, we have chosen several Krylov sub-
space methods.

Jacobi iterations. The Jacobi process is the simplest
stationary iterative method and is given by

x(k+1) = cP T · x(k) + b, (9)

Figure 1: A flowchart of the computation methods
used in this paper. The PageRank problem can be
solved as both the dominant eigenvector or the so-
lution of a linear system.

after appropriate substitutions for the PageRank problem.
Jacobi iterations formally result in the geometric series

x =
∑

k≥0(cP
T )kb, when started at x0 = b and thus, also

have the rate of convergence of at least c. On graphs without
dangling pages, the convergence is precisely c and Jacobi and
power iterations result in the same algorithm.

Krylov subspace methods. We also consider a set of
Krylov subspace methods to solve the linear system Eq. (7).
These methods are based on certain minimization proce-
dures and only use the matrix through matrix-vector mul-
tiplication. Detailed description of the algorithms are avail-
able in [6] and [4].

In this study we have chosen several Krylov methods sat-
isfying our criteria:

• Generalize Minimum Residual (GMRES)

• Biconjugate Gradient (BiCG)

• Quasi-Minimal Residual (QMR)

• Conjugate Gradient Squared (CGS)

• Biconjugate Gradient Stabilized (BiCGSTAB)

• Chebyshev Iterations.

Although the convergence of these methods is less predictable
than for Jacobi iterations, it can often be improved by the
use of preconditioners. In this study we have used parallel
Jacobi, block Jacobi, and additive Schwarz preconditioners.

In all of the above methods we start with the initial guess
x(0) = v. Note that the norm of ||x(k)|| is not preserved in
the linear system iterations. If desired, we can normalize
the solution to become a probability like the true PageRank
vector by computing x(k)/||x(k)||.

Figure 1 presents a computation flowchart of all the meth-
ods used in this paper. The computational complexity and
space requirements of these methods are given in Table 1.

Finally, to monitor the convergence of iterative methods,
we used absolute error ||x(k+1) − x(k)|| for power iterations

and normalized residual error ||Ax(k) − b||/||x(k)|| for the
linear systems.



Method IP SAXPY MV Storage
PAGERANK 1 1 M + 3v
JACOBI 1 1 M + 3v
GMRES i + 1 i + 1 1 M + (i + 5)v
BiCG 2 5 2 M + 10v
BiCGSTAB 4 6 2 M + 10v

Table 1: Computational Requirements. This table
enumerates the operations per iteration. IP counts
inner products, SAXPY counts AXPY operations,
MV counts matrix vector multiplications, and Stor-
age counts the number of matrices (M) and vectors
(v) required for the method.

3. PARALLEL IMPLEMENTATION
We chose a parallel implementation of the PageRank al-

gorithms to meet the scalability requirement. We wanted
to be able to compute PageRank vectors for large graphs
(one billion links or more) quickly to facilitate experiments
with the PageRank equation. To that end, our goal was
to keep the entire Web graph in memory on a distributed
memory parallel computer while computing the PageRank
vector. An alternate approach explored in [24] is to store
a piece of the web graph on separate hard disks for each
processor and iterate through these files as necessary.

Our parallel computer was a Beowulf cluster of RLX blades
connected in a fully connected topology with gigabit ether-
net. We had twelve chassis composed of 10 dual processor
Intel Xeon blades with 4 GB of memory each (240 proces-
sors, and 480 GB memory total). Figure 2 shows a visual
representation of our parallel system.

The parallel PageRank codes use the Portable, Extensible
Toolkit for Scientific Computation (PETSc) [4, 5] to imple-
ment basic linear algebra operations and basic iterative pro-
cedures on parallel sparse matrices. In particular, PETSc
contains parallel implementations of many linear solvers,
including GMRES, BiCGSTAB, and BiCG. While PETSc
provided many of the operations necessary for working with
sparse matrices, we still had to develop our own tools to
load the Web graphs as parallel sparse matrices, distribute
them among processors, and perform load balancing. We
also implemented the optimized power iteration algorithm
from Section 2.2.1 and Jacobi iterations.

PETSc stores a sparse matrix in parallel by dividing the
rows of the matrix among the p processors. Thus, each
processor only stores a submatrix of the original matrix.
Further, PETSc stores vectors in parallel by only storing
the rows of the vector corresponding to the matrix on that
processor. That is, if we partition the n rows of a matrix
A among p processors then processor i will store both the
matrix rows and the corresponding vector elements. This
distribution allows us to load graphs or matrices which are
larger than any individual processor can handle, as well as
to operate on vectors which are larger than any processor
can handle. While this method allows us to work on large
data, it may involve significant off-processor communication
for matrix-vector operations. See [5] for a discussion of how
PETSc implements these operations.

3.1 Load-Balancing Web Graphs
Ideally, the best way to divide a matrix A among p proces-

sors is to try to partition and permute A in order to balance

RLX RLX RLX

RLX Blades
Dual 2.8 GHz Xeon

4 GB RAM

Gigabit Ethernet
120 Total

MPI

PETSc

Parallel PageRank

Gigabit Switch

Off the shelf

Custom

Figure 2: Our Parallel PageRank System.

work and minimize communication between the processors.
This classical graph partitioning problem is NP -hard, and

approximate graph partitioning schemes such as ParMeTiS [20]
and Pjostle [26] fail on such large power law data.1

Thus, we restricted ourselves to a simplified heuristic method
to balance the work load between processors.

By default, PETSc balances the number of matrix rows
on each processor by assigning each approximately n/p rows.
For large Web graphs this scheme will result in a dramatic
imbalance among the number of non-zero elements stored
on each processor and often will result in at least one pro-
cessor with more than 4 GB of data. To solve this problem
we implemented a balancing scheme whereby we can choose
how to balance the data among processors at run-time.

We allow the user to specify two integer weights wrows and
wnnz and try to balance the quantity wrowsnp + wnnznnzp

among processors, where np and nnzp are the number of
rows and non-zeros on processor p, respectively. To imple-
ment this approximate balancing scheme, we always store
entire rows on one processor and keep adding rows to a
processor and incrementing a counter until this counter ex-
ceeds a determined threshold (wrowsn + wnnznnz)/p. Typ-
ically, we use equal weighing between rows and non-zeros
(wrows = 1, wnnz = 1). Due to the large number of low-
degree nodes in our power law dataset, this approximate
scheme, in fact, gives us a good balance of work and mem-
ory among processors.

This loading scheme is far from ideal. We discuss one
set of problems associated with loading power law graphs in
general in Section 4.1. Second, we discuss a set of heuristics
for working with our largest graph in the following section.

3.2 Method Specific Distribution
A few tweaks were required to allow the av graph (vide

infra) to work with our implementation. This graph has 1.5
billion nodes and 6.6 billion edges. Even equal balancing
between nodes and edges, wrows = 1 and wnnz = 1, is insuf-
ficient for such large graphs and overloads the 4 GB mem-
ory limit on some nodes. Thus, we attempted to estimate
the optimal balance for each algorithm. From Table 1, the
standard power iteration algorithm for PageRank requires
storing the matrix and 3 vectors. Since the matrix is stored
in compressed-row format with double sized floating point
values, PETSc requires at least (12·nnz+4n)+3·(8n) bytes.

1We believe these failures are due to problems with coars-
ening the graph in the presence of a power law distribution.
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Figure 3: The sparsity pattern for the adjacency matrix bs-cc.

Because there is some overhead in storing the parallel ma-
trix, we typically estimate about 16nnz total storage for the
matrix (i.e. 33% overhead). This yields a row-to-non-zero
distribution of approximately 2 to 1. Thus, for simple power
iterations we set wrows = 2 and wnnz = 1 for our dynamic
matrix distribution. A similar analysis for the BiCGSTAB
algorithm yields the values wrows = 4 and wnnz = 1.

4. DATA
In our experiments we used seven Web related directed

graphs. The av graph is the Alta Vista 2003 crawl of the
Web, the largest dataset used in our experiments. We also
constructed and used four subsets of the av graph: the bs-
cc graph is the largest strongly connected component of all
hosts under stanford.edu and berkeley.edu; the edu graph
contains web pages from the .edu domain; the yahoo-r2 and
yahoo-r3 graphs contain pages reachable from yahoo.com by
following two and three in- or out-links. We also used a Host
graph, db, obtained from a Yahoo! crawl by linking hosts,
e.g. help.yahoo.com, by agglomerating links between pages
on separate hosts. We used an unweighted version of this
graph for our experiments. Finally, the uk graph contains
only UK sites and was obtained from [1]. Basic statistics for
these graphs are given in Table 2.

Figure 3(a) shows a sparsity pattern of the matrix bs-
cc. This matrix represents the connectivity pattern between
pages on this small subset of the web. There are two im-
portant features of this matrix. First, it is unsymmetric.
Second, there are patterns in the matrix: a few rows appear
to have some block-structure (and thus, good parallel per-
formance), but the left hand side of the matrix is fairly filled
in. Without any good structure we often had to exchange
data between all processors in an iteration.

The remainder of this section discusses a few aspects of
the web graphs which are different from the regular graphs

Name Nodes Links Storage Size
bs-cc 20k 130k 1.6 MB
edu 2M 14M 176 MB

yahoo-r2 14M 266M 3.25 GB
uk 18.5M 300M 3.67 GB

yahoo-r3 60M 850M 10.4 GB
db 70M 1B 12.3 GB
av 1.4B 6.6B 80 GB

Table 2: Basic statistics for the data sets used in the
experiments.

found in most scientific computing applications.

4.1 Node Degree Distribution
As discussed in the introduction, web graphs are power

law graphs. The defining feature of a power law graph is
that the number of nodes of degree k is proportional to k−β .
Previous studies of web graphs have shown that β ≈ 2.1 [2].
Using the algorithm from [12], we calculated a power law co-
efficient near 1.5 for out-degrees and near 1.8 for in-degrees.

Figure 4 displays the power law distribution for the graphs
bs, y2, and db. One interesting observation is that the
db graph has a different out-degree distribution than the
other graphs. Because this graph is formed by agglomerat-
ing pages on a single host together, this result makes sense.
Although any particular page on the web may only link to a
few others, essentially the out degree of any page is bounded;
when pages on a host are agglomerated this bound is re-
moved.

From an implementation perspective, the presence of the
power law in the degrees of the graph poses a few chal-
lenges. First, we were not able to use standard tools such
as ParMeTiS and pjostle to compute a distribution of the
nodes over processors. These tools ran out of memory even
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Figure 4: These plots show in-degree and out-degree distributions for three web graphs. Each plot is roughly
linear on a log-log scale. The coefficient of the best fit line is listed as b in the title.

when it was plentiful (available memory was 10 times the
size of the graph). Second, storing the references to off pro-
cessor elements may be expensive. Because there is such
diversity in the outlinks on the pages, a processor may have
to store information on a large set of columns of the matrix.

4.2 Web Graph Structure
Broder el al. showed that the web graph has a “bow-tie

structure” [7]. There is a large strongly connected compo-
nent at the core of the web graph. Attached as the “bows”
are large components of pages with only outlinks (left bow)
and only inlinks (right bow). There are also a few long
chains of pages.

Additionally, they note a few interesting results for ran-
dom walks in the graph. Experimentally, they found that a
random start and end node will only have a path between
them 75% of the time. Further, the diameter of the graph is
at least 500. These results were for a 1.5B link graph with
200M pages and we assume similar results are true for our
graphs db and yahoo-r3.

Host Order. There is further structure in the web graph
between hosts, e.g. help.yahoo.com, and pages [18]. Pages
on a particular host will tend to link among each other and
to common pages on that host. This effect can be consid-
ered the local clustering effect of the small world network
in the web graph. Effectively, this result implies that the
sparsity pattern of the web graph has a block structure as-
sociated with it. We can reveal the structure by permuting
the matrix by a reverse domain ordering [18]. That is, we
take a URL such as help.yahoo.com/help/us/games and
reverse the order of the elements in the host name to get
com.yahoo.help/help/us/games. We then sort the modi-
fied URLs lexicographically and permute the matrix accord-
ingly. We refer to this ordering as the “host order” for the
rest of the paper. Figure 3(b) shows the matrix bs-cc with

the host ordering.

5. RESULTS
Our results are divided into two sections. In the first

section, we present our results on the parallel performance
of the algorithms. This section addresses issues such as
scalability and load-balancing; i.e. how does the parallel
implementation perform? The second section discusses the
numerical performance of the algorithms. Here, we are pri-
marily concerned with convergence in time; i.e. how long do
these algorithms take to run?

5.1 Parallel Performance

5.1.1 Distribution and Load-Balancing
Our distribution and load balancing scheme (described in

Section 3.1) allowed us to load and distribute the matri-
ces to the cluster without overloading the memory on any
particular machine. Figure 5 presents a plot of the run-
time of the PageRank algorithm against time for one of the
smaller graphs. For the simple distribution (an equal num-
ber of rows on each processor), the runtime displays oscilla-
tions as the number of processors increases. This behavior is
smoothed by the load-balancing distribution. Because our
algorithms are so sensitive to the communication pattern in
the matrix-vector multiply operation, we believe that these
peaks correspond to local maxima in the communication
patterns. However, we never explicitly attempt to enforce
the smoother behavior in our load-balancing and distribu-
tion; thus for other graphs, the load balancing distribution
may also display the peaks.

5.1.2 Scalability
We have performed multiple numerical tests and present

the results for the y3 and av graphs. We only present scala-
bility results on a subset of the methods. (As we’ll soon see
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in the numerical experiments, these are the methods that
matter – the best performing numerical algorithms.) Fig-
ure 6 presents the two scaling plots that show scalability of
parallel PageRank. In both cases, the KSP solvers (GM-
RES and BiCGSTAB) scaled better than the power itera-
tion algorithm. On the av graph, we showed “superlinear”
speedup of the BiCGSTAB method. We believe that this
large speedup is due to the simple distribution and load-
balancing scheme employed. Effectively, the computations
were done in the “peaks” in the distribution from Figure 5.

5.1.3 Topology Experiments
We also have performed some experiments with an al-

ternate network topology. In the first configuration (called
“star”), each of the 10 blades (20 processors) inside a chassis
were connected to a single switch. The switches were then
connected via a master switch. All the switches were giga-
bit speed. In the second configuration (called “full”), each
blade was directly connected to a gigabit switch. The clus-
ter topology had a dramatic effect on computation times.
Because the latency is larger for the fully connected topol-
ogy, we see a slight decrease in performance for our smallest
graphs. For the larger graphs, the speedup is dramatic. On
the av graph, the algorithms performed 3 times as fast on
the fully connected topology.

The first number is the result from star topology; the
second is from the full topology.

Power BiCGSTAB
av (140 procs) 2144 s/680 s 1982 s/955 s
db (60 procs) 806 s/557 s 315 s/220 s

5.2 Numerical Convergence Experiments
In this section, we’ll focus on the performance of the al-

gorithms from a numerical point of view. In this sense, the
goal is to compute the PageRank vector to a given toler-
ance as quickly as possible. We have performed multiple

Graph PR Jacobi GMRES BiCG BCGS

edu 84 84 21† 44∗ 21∗

20 procs 0.09 s 0.07 s 0.6 s 0.4 s 0.4 s
yahoo-r2 71 65 12 35 10
20 procs 1.8 s 1.9 s 16 s 8.6 s 9.9 s

uk 73 71 22∗ 25∗ 11∗

60 procs 0.09 s 0.1 s 0.8 s 0.80 s 1.0 s
yahoo-r3 76 75
60 procs 1.6 s 1.5 s

db 62 58 29 45 15∗

60 procs 9.0 s 8.7 s 15 s 15 s 15 s
av 72 26

226 procs 6.5 s 16.5 s
av (host order) 72 26

140 procs 4.6 s 15.0

Table 3: Timing Results. See discussion in text.

experiments on convergence of the iterative methods on a
set of graphs. We have studied the rate of convergence, the
number of iterations and total time taken by a method to
converge to a given accuracy. Our results are summarized
in Table 3.

In Table 3, the PR method is the standard PageRank
power iteration method. The BCGS method is the BiCGSTAB
method. The quasi-minimum residual (QMR), conjugate
gradient squared (CGS), and Chebyshev methods did not
converge on our data and we do not report additional results
on these methods. In the table, the first line for each graph
denotes the number of iterations required for each method
to converge to an absolute residual value of 10−7. The sec-
ond line shows the mean time per iteration at the given
number of processors. For the Krylov subspace methods,
no superscript means we used no preconditioner, whereas
∗ denotes a block Jacobi preconditioner and † denotes an
additive Schwarz preconditioner. We only report results for
the fastest (by time) method. All Krylov solvers failed on
“yahoo-r3” due to memory overloads on only 60 processors.

The convergence behavior of the algorithms on the uk
and db graphs is shown in Figures 7 and 8. In these figures,
we plot absolute error ||x(k+1) − x(k)|| for power iterations

and normalized residual ||Ax(k) − b||/||x(k)|| for the linear
systems.

We now discuss the results of our parallel linear system
PageRank on a full Web graph. Other experiments with this
data have been done by Broder et al. [8]. It is reported there
that an efficient implementation of the serial PageRank algo-
rithm took 12.5 hours on this graph using a quad-processor
Alpha 667 MHz server. A similar serial implementation on a
800 MHz Itanium takes approximately 10 hours. Our main
results on this graph are presented in Table 3 and the fol-
lowing table. These parallel run times do not include the
time necessary to load the matrix into memory as repeated
runs could be done with the in-memory matrix. By taking
advantage of the block structure present in the data using
the host ordering discussed in Section 4.2, we were able to
decrease total computation time to 333 seconds.

PR BiCGSTAB
226 processors without host order 461 s 433 s

140 processors with host order 333 s 391 s

In these results, we see that power iterations is the fastest
algorithm for 140 processors with the host ordering, but
BiCGSTAB is the fastest method for 226 processors in the



original ordering. In many of our results, we saw these
two methods interchange places. The relative performance
of these algorithms is strongly dependent on the matrix-
vector multiply time. If matrix-vector multiplications are
“fast,” then power iterations perform the best. Likewise,
if matrix-vector multiplications are “slow,” such as when
we do not have a good method for distributing the matrix,
then BiCGSTAB performs the best. Effectively, the extra
work done by BiCGSTAB is only effective if it takes signif-
icantly less time than another matrix-vector multiplication.
Because we observed that BiCGSTAB scales better than
power iterations, as the number of processors increase, we
anticipate this method to perform better than power itera-
tions with many processors.

While the improvement due to the host order is impres-
sive, it is not generically applicable. For example, the db
graph is formed by agglomerating all the pages under one
host. Hence, no host ordering exists for that graph.

In summary, our analysis of the results shows that:

• The power and Jacobi methods have approximately
the same rate and the most stable convergence pat-
tern. This is an advantage of stationary methods that
perform the same amount of work per any iteration.

• The convergence of Krylov methods strongly depends
on the graph and is non-monotonic.

• Although the Krylov methods have the highest average
convergence rate and fastest convergence by number of
iterations, on some graphs, the actual run time can be
longer than the run time for simple power iterations.

• BiCGSTAB and GMRES have the highest rate of con-
vergence and converge in the smallest number of iter-
ations, with GMRES demonstrating more stable be-
havior.

• The best method to use is either power iterations or
BiCGSTAB. The final choice of method is dependent
on the time of a parallel matrix-vector multiply com-
pared with the time of the extra work performed in
the BiCGSTAB algorithm.

6. CONCLUSIONS
We have developed an efficient scalable parallel implemen-

tation for the solution of the PageRank problem and stud-
ied Jacobi and Krylov subspace iterative methods. Our nu-
merical results show that power iterations and BiCGSTAB
are overall the best choice of solution methods. Using our
parallel implementation, we reduced the time to compute a
PageRank vector on a full web graph from 10 hours to 5.5
minutes.

In developing our implementation, we discovered prob-
lems with tools typically associated with parallel computing.
We were unable to compute a good partition for our dataset
using ParMeTiS or pjostle. Further, due to the wide range
of connections between elements in the directed web graph,
a matrix vector multiply operation on our graph frequently
involved all the processors communicating. Unfortunately,
fully connected topologies such as the one used in this ex-
periment are expensive and unscalable; thus, we need better
ways of loading these graphs in a distributed fashion.

The number of power law graphs and the size of such
graphs continues to grow. Current estimates of the full

web graph size exceed 8 billion pages. As the size of such
graphs grow, tools to efficiently work with them in parallel
will become necessary. Continued work needs to be done to
determine the best ways to manipulate these graphs on a
distributed computer.
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Figure 6: Parallel scaling performance of our algorithms. In both cases, we see that the KSP methods,
BiCGSTAB (bcgs) and GMRES, scale better than power iterations (std).
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Figure 7: Convergence of iterative methods on the uk Web graph.
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Figure 8: Convergence of iterative methods on the db Host graph.
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