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ABSTRACT
In this manuscript, we evaluate the application of the singu-
lar value decomposition (SVD) to a search term suggestion
system in a pay-for-performance search market. We propose
a novel positive and negative relevance feedback method for
search refinement based on orthogonal subspace projections.
We apply these methods to the subset of Overture’s market
data and demonstrate the effect of SVD and subspace pro-
jections on search results.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Relevance
feedback, Retrieval models; G.1.3 [Numerical Linear Al-
gebra]

General Terms
Algorithms, Experimentation

Keywords
Latent Semantic Indexing, Singular Value Decomposition,
Vector Space Model, Relevance Feedback

1. INTRODUCTION
In a pay-for-performance search market, advertisers com-
pete in online auctions by bidding on search terms for spon-
sored listings in affiliated search engines. Because of the
competitive nature of the market, each keyword may have
bids from many advertisers and almost every advertiser bids
on more than one search term. The practical goal of our
work was creating a “term suggestion” tool, which, for any
given search term, provides a sorted list of correlated terms
and suggests them to the user. In this analysis, we consider
applications of a singular value decomposition (SVD) [9] to
term suggestion ranking. The advertisers, bidded search
terms, and placed bids constitute the dataset.

∗Work performed while at Yahoo! Research Labs.
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One of the desired features in the term suggestion tool was
to control the level of “generality” of suggested terms. To
that end, we decided to use a vector space model and an
SVD based approach. An alternative approach would be to
cluster the data and return terms from the same cluster [5].
The vector space model-based approach avoids using a rigid
clustering and allows each query to potentially form a “soft
cluster” of relevant results.

Latent semantic indexing (LSI) [7, 8] uses an SVD based-
method to expose and search semantic information within
a dataset. Most papers cite the use of LSI to enhance text
information retrieval systems, [2, 3, 6]. In this context, LSI
is used to compute a document-query similarity score for
each document in the collection. However, as noticed in [7,
11], we can also compute the similarity between documents
and other documents, between documents and terms, and
between terms and other terms. In this paper, we focus on
using LSI for term-term similarity. For clarity of notation,
when we refer to LSI, we are referring to the process of
computing similarity scores for a query through projection
into the SVD subspace.

According to the vector space model, every search term in a
dataset is represented as a vector in a space of all advertisers
with nonzero entries corresponding to advertisers bidding on
this term. Then, the proximity between search terms can be
measured as the cosine of the angle between corresponding
term vectors. We can calculate the proximity between any
given search term and the rest of the terms in the collection
and then sort the retrieved terms according to this proximity
measure.

Using the vector space approach guarantees retrieval of terms
whose advertisers bid on the search term (exact match). Us-
ing LSI, we can also perform a conceptual match [7, 2] and
might significantly expand the number of suggested terms
and also change their ranking. In other words, LSI enables
us to match terms globally, or conceptually, without the
need for explicit connections.

While this paper is mainly experimental, it provides ad-
ditional insight into LSI’s properties and behavior. The
demonstrated effect of the dimensionality reduction is rather
general, since our dataset has a power law distribution, typ-
ical for any text collection data.
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Figure 1: A log-log plot of the number of advertisers
bidding on each term. The results are sorted so that
the term with the most bids is first, and the term
with the least bids is last. The plot indicates a power
law distribution of the data.

2. DATA
In this study, we use a small, densely connected subset of
Overture’s United States term-advertiser data with 10,000
bidded search terms, 8,850 advertisers, and more than 250,000
bids.

Our representation for the data is a term-advertiser matrix,
A, whose columns correspond to advertisers and rows to
bidded search keywords, that is, search terms. The number
of rows in this matrix, m, is equal to the number of unique
bidded keywords, and the number of columns, n, is the num-
ber of unique advertisers active on the market. This matrix
is strictly non-negative and is also sparse, since the major-
ity of the advertisers bid only on a small number of terms.
Thus, every column of this matrix represents an advertiser
vector described in the bidded keyword space and every row
is a bidded keyword vector in the advertiser space. This ar-
rangement follows the traditional vector space model [1] for
a textual collection, where every column is a word distribu-
tion histogram for a document.

The matrix A is normalized using the binary frequency vari-
ant of term-frequency, inverse document frequency normal-
ization [3],

Aij =
χij log(n/ni)Pm

j=1[χij log(n/ni)]2
, (1)

where χij is 1 if advertiser j bids on term i, n is the total
number of advertisers in the collection, and ni is the number
of advertisers which bid on term i.

Additionally, the term-advertiser data obeys a power law
distribution, as seen in Figure 1. Thus, the results obtained
in this study, could be applicable to other data that follow
a power law distribution, such as textual data [1].

3. METHOD
In this section, we describe methods in our process. First,
we depict projection operators from linear algebra. Second,
we discuss the cosine distance measure and its interactions
with projection operators. Next, we discuss projections in
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Figure 2: The cosine similarity results from four
terms. The ordered terms are on the logarithmic
horizontal axis and the similarity for four different
techniques is shown. The solid line is the exact co-
sine similarity; the dotted lines show the cosine sim-
ilarities in three SVD subspaces. See Table 1 for the
top terms suggested.

the latent semantic subspace and how we use these projec-
tions to rank term suggestions. Finally, we introduce a novel
method of relevance feedback using subspace projections.

3.1 Projection Operators
An orthogonal projection on a unit vector v is defined as
P̂ = vT v, where v is a column vector. An orthogonal pro-
jection on a subspace spanned by a collection of k vectors
v1, v2, . . . , vk is given by a projector operator

P̂k =

kX
i=1

viv
T
i = VkV T

k . (2)

Any projection operator has the property that P̂kP̂k = P̂k

and orthogonal projections have the additional property that
P̂ T

k = P̂k.

3.2 Cosine Distance Measure
For any two terms, ti and tj , we define the similarity metric
as a cosine of the angle between corresponding vectors,

sim(ti, tj) = cos(ti, tj) =
tT
i · tj

||ti|| ||tj ||
. (3)

In the subspace, defined by its orthogonal projection Pk, the
similarity (cosine of the angle) between vector projections is

sim(Pkti, Pktj) = cos(Pkti, Pktj) =
(Pkti)

T · (Pkti)

||Pkti|| ||Pktj ||
. (4)

Using Eq. 2, the scalar product between vectors can be
expressed as

(Pkti)
T · (Pktj) = tT

i Pktj = (V T
k ti) · (V T

k tj), (5)



jewelry silver future trading
jewelry silver 1 future trading 1
necklace silver 0.998 future option 0.999

jewelry silver sterling 0.996 commodity market 0.999
fine jewelry 0.994 commodity future trading 0.999
gold jewelry 0.993 future quote 0.999

jewelry wholesale 0.992 commodity trader 0.999
necklace pearl 0.992 commodity trading 0.998
bracelet silver 0.991 future online trading 0.998
jewelry pearl 0.991 commodity option 0.998
silver sterling 0.990 commodity online trading 0.998

Table 1: The top ten suggestions and their cosine
similarity for two terms from Figure 2 using LSI
with k = 100.

and the vector norm in the subspace is given by

||Pkt||2 = (Pkt)T (Pkt) = tT Pkt = ||V T
k t||2. (6)

3.3 SVD Subspace Projections
We first decompose term-advertiser matrix A using the sin-
gular value decomposition,

A = USV T . (7)

The first k columns of the matrix V form the truncated
orthogonal subspace, Vk. Note, that we are using Vk in-
stead of Uk since we are interested in terms space, not ad-
vertiser space, and thus it might be easier to think about
AT = V SUT factorization instead. The number of columns
in Vk is equal to the rank k of the subspace we use. Every
column of Vk is a basis vector, and any search term in the
dataset can be represented as a linear combination of Vk and
SkUT

k , where the columns of SkUT
k are the coefficients of the

terms in the Vk subspace. The Eckart and Young theorem
[9] guarantees that top k singular vectors provide the best
(closest in the L2 norm sense) approximation of the data
vectors Ak to A in any basis of the order k.

3.4 Search term ranking
A query q is a search term represented in the advertiser
space, or in other words, a query is a column ai of the ma-
trix AT ; alternatively, it is a row of the matrix A. Mathe-
matically, it is convenient to express qi = ai = AT ei, where
ei is a column vector of all zeros except for a position corre-
sponding to the column of interest in the matrix AT , or row
in the matrix A. The angle between a query vector and any
other term vector in the matrix is

sim(ti, qj) = cos(ti, qj) =
aT

i aj

||ai|| ||aj ||
=

(AT ei)
T (AT ej)

||ai|| ||aj ||
=

(AAT )ij

||ai|| ||aj ||
, (8)

which is a normalized inner product of AT columns, or A
matrix rows.

The similarity for the same vectors in the SVD orthogonal
subspace is given by

sim(V T
k ti, V

T
k tj) = cos(V T

k ti, V
T

k qj) =

(V T
k AT ei)

T (V T
k AT ej)

||(V T
k AT ei)T || ||(V T

k AT ej)||
=

(SUT
k )T

i (SUT
k )j

||(SUT
k )T

i || ||(SUT
k )j ||

. (9)

The above result of SVD decomposition is equivalent to the
use of eigen-decomposition (i.e. principal component analy-
sis) on a correlation (affinity) term-term matrix AAT , where
Λi = S2

i and Ui are eigenvectors, that is,

(AAT )Ui = UiΛi. (10)

Figure 2 demonstrates the cosine similarity scores for all
terms in the dataset to four different search terms and how
the similarity scores change when projecting into various
SVD subspaces. Table 1 displays the top 10 suggested terms.
Finally, Figure 3(a) elaborates on the differences between
the exact cosine and SVD subspace cosine similarities.

3.5 Relevance Feedback
We can iteratively refine the results when the user chooses
terms from the returned results to reinforce or reject the
ranking, thus performing positive or negative refinements.

By positive refinement, we mean the user selecting positive,
reinforcing examples to his query from the provided term
list. Then, instead of using q0 as a query, we can construct a
new extended query, that spans the space {q0, aj1, aj2, ..ajp},
where aj is the j-th column of AT corresponding to the term
that the user choses to reinforce the query. Notice, that we
are not computing the centroid for a new query as in [3, 2],
but rather are measuring the angle between the terms and
an extended query subspace. If the space is formed by non-
orthogonal vectors, the projection operator on that subspace
is given by [13].

P̂q = Q(QT Q)−1QT . (11)

When vectors qi forming the subspace are orthogonal, i.e.
QT Q = I, then the projection operator reduces to Eq. (2).

The angle between a term and the positive term subspace
is defined as the angle between a term and its orthogonal
projection on that subspace. Formally,

sim(ti, q
′) =

tT
i P̂qti

||ti|| ||Pqti||
. (12)

This feedback mechanism works in both the entire space and
SVD subspace. For the SVD subspace, instead of ti we use
tik = VkV T

k ti and Q is formed using aik = VkV T
k ai. Table 2

displays the change in search term ranking after positive re-
finement, and Figure 4 shows the change in similarity scores
with positive refinement.

Negative refinement allows users to choose irrelevant docu-
ments and force the search results to be orthogonal to them.
Thus, we are looking for a vector term in the collection with
the smallest angle with the query and, at the same time, or-
thogonal to the negative term vectors specified by the user.
Again, we want to emphasize that our method will produce
results orthogonal to the entire subspace spanned by nega-
tive examples and not to only those terms1. In this case,
we need to build a complementary projector to the negative

1The subspace spanned by examples means that the re-
turned result will be orthogonal to any possible linear com-
bination of negative documents
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(a) Rank ordered similarity scores.
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(b) Histograms of similarity scores.

Figure 3: The suggested results for the term “flower” from the exact (non-LSI) cosine method and the LSI
method with k = 100. On the lower horizontal axis of (a), we include the suggestions at various points on the
logarithmic scale from the LSI results; these terms correspond to the upper curve. The upper horizontal axis
has suggestions from the exact approach, corresponding to the lower curve. The dotted line in the middle
shows the exact results plotted with the ordering from LSI, i.e the lower curve ordered on the lower axis.
In (b), the horizontal axis is the similarity score and the vertical axis shows the logarithm of the number of
results with that similarity score. Since the vertical axis is logarithmic, the area underneath the histograms
is equal, although it appears uneven.

examples space,

P̂qn = I − P̂q. (13)

Then the new similarity score becomes

sim(ti, q
′) =

tT
i (I − P̂ T

q )ti

||ti|| ||(I − P̂ T
q )ti||

. (14)

4. IMPLEMENTATION
We developed two programs for this work. The first is a
program to compute the truncated SVD of a sparse matrix
using the Implicitly Restarted Lanczos Method implemented
in ARPACK [12], and ARPACK++ [10] libraries. The sec-
ond is a Java program to query a dataset and retrieve results
between general and specific associations (Figure 6 shows
the user interface in the Java application).

While the formulas presented in the previous section provide
a compact description of the operations, they are extremely
inefficient as written. For example, while the original matrix
A is around 3 MB in a sparse matrix representation, the
matrix AAT is more than 300 MB. Thus, we needed to plan
the application solely using sparse and dense matrix vector
multiplications.

Instead of directly computing the final form of Equation 8,
we first row-normalize the sparse matrix A to Â then com-
pute the intermediate vector ai = ÂT ei through a sparse
matrix-vector multiply. This operation extracts the query
vector, row i from matrix A, which is already normalized.
Then we compute the matrix vector product Aai, which
simultaneously computes the cosines for each term in the

“internet” “internet” + “cheap isp”
internet cheap isp

computer internet internet
free internet low cost isp

internet service cheap internet service
access national isp

isp unlimited internet access
isps cheap internet service provider

internet provider cheap internet access
isp provider isp provider

dial up internet access internet access provider

Table 2: Changes in the top 10 suggested terms after
positive refinement on the term “cheap isp,” that is,
inexpensive internet service providers. “Cheap isp”
was the 18th result.

collection. We perform a similar operation using the pre-
computed dense matrix UkS to compute the cosines in the
LSI subspace as in Equation 9.

Finally, before we perform any projection operations, we
orthogonalize vectors using the Gram-Schmidt process [9].
This operation is computationally more efficient and stable
than inverting the matrix in the non-orthogonal case.

5. EXPERIMENTAL RESULTS
Examination of the results from the SVD subspace projec-
tion and the exact cosine similarity reveals two interesting
features. First, projecting into the SVD subspace appears to
form clusters of data for certain terms. Second, the distance
distortion between the results returned by LSI and the exact
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(b) Histograms of similarity scores.

Figure 4: Similarity result curves with user feedback. The bottom curve shows the exact similarity results
for the term “internet;” the middle curve is for k = 100 LSI similarity; and the upper curve is for k = 100
similarity with positive refinement on the term ”cheap isp.” The vertical scale in (b) is logarithmic. The
reason the LSI results display negative cosine values is that in we normalize the results when projecting into
the SVD subspace, thus the vectors lie on a hypersphere, so the maximum angle is π. In the exact space, the
matrix is positive so the vectors are all in the same quadrant,i.e. the maximum angle is π/2. When positively
refining, we project a vector onto a subspace and measure the angle between the projected vector and the
original vector. This angle is always less than or equal to π.

cosine method is quite small.

5.1 Clustering Behavior
Figure 3(a) demonstrates the clustering behavior that occurs
with LSI, but not with the exact cosine similarity. The
plateau at the top of the LSI curve represents a set of results
whose similarity scores are high. If we take the histogram
of the distances, like in Figure 3(b) this behavior becomes
even more apparent. The cluster at the right of the LSI
histogram represents the “flower” cluster in the data. It is
interesting to note, that the steep decline of the LSI curve
corresponds to the end of related terms.

This behavior, however, does not occur for all terms in the
dataset. In Figure 2, the terms “marketing strategy” and
“instrument musical” do not display any clear clustering be-
havior. Additionally, the histogram for the term “internet”
in Figure 4(b) only shows a weak cluster near the similar-
ity score 0.8. Note that with positive refinement on the
term “cheap isp” from “internet” a strong cluster of terms
emerges.

5.2 Distance Distortion
The dotted line in the middle of Figure 3(a) represents the
distortion between the distances in LSI subspace and in com-
plete space. That is, we plot the similarity values from the
exact cosine sorting results using the ordering from the LSI
results. Of note in this figure is that there is very little dis-
tortion of the results beyond the plateau. This fact indicates
that LSI only performs a local reordering of the results.

Number of Dimensions
P

i cos(q, ai)
2

k = 25 935.9
k = 50 284.8
k = 75 217.8
k = 100 190.5
Exact 7.17

Table 3: The sum of squared angle-cosines between
the query term “flower” and all other terms in the
dataset. As per Brand’s polarization theorem, this
sum is strictly decreasing as k increases. The exact
result is the sum in the original space.

6. DISCUSSION
Our results indicate that as the data representation is trun-
cated, the angles between vectors become smaller causing
the cosine values to increase as in Figures 2, 3, and 4. One
explanation for these results comes from [4]. In that pa-
per, the author suggests that as the dimensionality of the
representation is reduced, the distribution of cosines (simi-
larity measures) migrates away from zero to ±1. This be-
havior is easily seen in Figures 3 and 4. Mathematically, this
statement follows from a polarization theorem [4] that states
when a positive matrix A is projected to successively lower
dimensions AD−1, . . . , Ak, . . . , A1, the sum of squared angle-
cosines between projected column vectors,

P
i6=j [cos(ti, tj)]

2,
is strictly increasing. Table 3 shows that our numerical re-
sults confirm this statement.

Thus, the singular value decomposition of A exaggerates the
structure of A by reducing the angle between similar vectors
and increasing the angle between dissimilar vectors.
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Figure 5: Histograms of the distortion amounts for
the term “flower” with increasing k. The distortion
measures how much the results change between the
exact cosine similarity and the LSI similarity.

Returning to Figure 3(a) and 3(b), the plateau in the results
from LSI clearly shows how term vectors similar to “flower”
are almost collapsed to the same point. The terms, “jewelry
silver” and “future trading” from Figure 2 also demonstrate
this effect. However, there is no such result for “market-
ing strategy” and “instrument musical.” In these cases, we
believe that no set of similar vectors exists.

Since the steep decline in the LSI curve corresponds to the
end of the related terms for the query “flower,” identifying
this cutoff suggests a natural way to cluster a dataset us-
ing SVD subspace projections. For the terms, “marketing
strategy” and “instrument musical,” then, there is no good
cluster in the data for these terms. We observed that a
topic generally does not correspond to a single axis in the
SVD subspace and accurate clustering requires working in
subspaces.

The local distortion effect identified in the previous section
reinforces our belief in LSI’s clustering ability. The largest
distortion in the angles is between vectors that are already
similar (the left side of the curve in Figure 3(a)). Thus,
projecting into the SVD subspace causes clusters of vectors
to become tighter. In Figure 5, we computed histograms
of the amount of distance distortion at various similarity
scores. The histograms showed that for k > 50, the distor-
tion tends to be small, i.e. the reordering is local. Thus, the
projections with more than 50 dimensions are strong enough
to separate the topics, but still cause only small distance dis-
tortion and reordering.

7. SUMMARY AND CONCLUSIONS
We investigated the effect of SVD subspace projections on
data from a pay-for-performance advertising market. We
developed a tool to suggest related terms at varying levels
of generality by varying the rank of the SVD subspace. Ad-
ditionally, we developed a novel relevance feedback system
for positive and negative examples using vector subspaces.

The results from our system, along with the polarization

Figure 6: This is a screenshot of the user interface to
our term suggestion tool. The table shows the sug-
gestions for the word “flower,” using a fairly specific
level of generality (k > 100).

theorem [4] for reduced dimensional projections, suggest
that projection into the SVD subspace clusters the dataset.
The unique falloff pattern in the similarity scores suggests a
method to build clusters from the data.
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