
Technical Report

Spectral Clustering of Large Advertiser Datasets

Part I

Leonid Zhukov
Overture R&D

April 10, 2003
Revised: January 15, 2004

Contents

1. Introduction . 1
1.1 Vector space model . 2
1.2 Clustering . 2

2. Methods . 3
2.1 Basic graph terminology 3
2.2 Graph partitioning for clustering 4
2.3 Vector space model connection 4
2.4 Spectral graph partitioning 5

3. Implementation . 10
4. Experimental results . 11
5. Conclusions . 11

1. Introduction

A pervasive problem in data mining is finding natural grouping and hidden
trends in data. In this report we consider a pay-per-performance search list-
ing dataset, which consists of a set of advertisers and a set of keywords those
advertisers are bidding on. Due to the competitive nature of the market each
keyword may be bidded on by many advertisers and almost every advertiser
bids on more than one keyword.

The “advertiser-keyword” relationship can be represented by a bipartite
graph with edges connecting advertisers on one side of a graph with keywords
they are bidding on the other side of the graph. It is natural that advertisers
with common interests bid on the same subset of keywords and thus form a sub-
market, i.e. a collection of advertisers and bidded keywords that are connected
stronger to each other than to the rest of the dataset. From a graph theoret-
ical point of view, the submarket definition is equivalent to the definition of
approximate cliques, while from a data mining perspective it is the definition of
clusters. Thus the problem of finding submarkets can be approached through
clustering or graph partitioning of a bipartite graph [2], [5], [27].

In this study we use Overture’s US “advertiser-keyword” dataset with over
145,000 advertisers, 127,000 bidded keywords and more than 3.1 million bids and
its small densely connected subset of 3,000 bidded keywords, 2,000 advertisers
and 100,000 bids.

1

1.1 Vector space model

An alternative to bipartite graph representation for the data can be given by an
“advertiser-keyword” matrix whose rows corresponds to advertisers, columns to
bidded keywords and nonzero matrix elements to exiting bids. The number of
columns in this matrix is equal to the number of unique bidded keywords and
the number of rows is equal to the number of unique advertisers active on the
market. This matrix is sparse, since the majority of the advertisers bid only
on a small number of terms. Thus every column of this matrix represents an
“advertiser vector” described in the “bidded keyword space” and every raw is
a “bidded keyword vector” in the “advertiser space”. This constitutes a vector
space model [1].

1.2 Clustering

Clustering is a well studied problem in data mining there are exist multiple
clustering algorithms [3, 10, 23, 9, 16] In general, one can distinguish two type
of clusterings - hierarchical clustering and flat clusters. The former methods
provides a data hierarchy and can be converted to flat clusters by “cutting” the
tree on a certain level. By construction, hierarchical clustering can be agglom-
erative or “bottom up” and divisive partitioning “top down” . Agglomerative
clustering typically examines every item in the data and assembles clusters by
grouping items together starting from singletons. Divisive approach, on the
opposite, starts by looking at the entire dataset and finding the way to split it
into several large group. Both approaches are recursive and build a hierarchi-
cal structure. Agglomerative approach is inherently O(N2) , partitioning could
be done in O(NlogN). Partitioning usually provides better large clusters, on
the top of the hierarchy, agglomerative is best at the bottom of hierarchy with
small groups. Flat clustering methods usually require a priori knowledge of
the number of clusters and based on iterative assigning elements to the clusters
(K-means).

In this report we will consider one of the divisive type of clustering algo-
rithms based on spectral properties of the data matrix. The algorithms will
consider data as a graph and clustering problem will be formulated as a graph
partitioning.

When formulating a clustering problem for a given data, one should decide
what are data points (objects) and what constitutes attributes. A reasonable
starting point for us is to cluster advertisers using the distribution of bidded
terms. That is, advertisers are data objects and bidded terms are attributes (co-
ordinates). Then advertisers whose choice of bidded terms significantly overlap
belongs to the same cluster.

So we need to define a similarity metric between advertiser (objects) based
on the bidded terms (attributes). Mathematically, in the vector space model,
this similarity can be expressed through the cosine of the angle between data

2

vectors - columns of the term-advertiser matrix:

Ca(a1, a2) = cos(a1, a2) =
a1 · a2

‖a1‖ · ‖a2‖
(1)

Thus, advertisers which bid on the identical set of terms, independently of the
size of that set, will always have the largest correlation Ca = 1. “Orthogonal”
advertisers do not have any terms in common and Ca = 0

Analogously, one can try to cluster bidded terms, considering them as vec-
tors in advertiser space (rows of matrix) and using corresponding co-occurrence
among advertisers. Two bidded terms have high correlation value and can be-
long to the same cluster if the same set of advertisers bids on them and zero if
there is is no overlap.

Cp(p1, p2) = cos(p1, p2) =
p1 · p2

‖p1‖ · ‖p2‖
(2)

Naturally, one might consider clustering based on both metrics, i.e, simulta-
neous clustering of terms and advertisers. In our work we will be using the last
approach.

2. Methods

2.1 Basic graph terminology

A graph G = (V,E) consists of a set of vertices V = {V1, V2...} and a set of
edges with edge weight eij connecting those vertices. Below we consider only
undirected graphs.

A graph can be represented using an adjacency matrix

M =
{
eij , if ∃ {i, j}
0, otherwise

(3)

Since our graphs are undirected, the adjacency matrix is always symmetric.
The vertex set of a graph can be divided into two groups according to some

properties, thus inducing a graph partitioning. The degree of dissimilarity be-
tween the two subgraphs can be computed as a total weight (sum of all weights)
of the edges that have been removed during the cut :

cut(V1, V2) =
∑
eij

eij =
∑

i∈V1,j∈V2

eij (4)

Classical graph partition algorithms try to minimize the cut value, i.e., find
such partitions V1 and V2 that minimize the objective function

Q(V1, V2) = cut(V1, V2); (5)

3

2.2 Graph partitioning for clustering

When using graph partition for clustering, we usually value big clusters more
than small ones and would like to prevent cutting off singletons or very small
subgraphs. This can be achieved by augmenting optimization function with a
normalization procedure. The new objective function can be written as

Q(V1, V2) =
cut(V1, V2)
W (V1)

+
cut(V1, V2)
W (V2)

(6)

where W is the sum of the weights of all nodes in the partition

W (V) =
∑
i∈V

wi (7)

Various choices of node weight function W lead to different partition criteria
and clustering results. For example,

• Ratio-cut [18]. All vertices are given the same weight wi = 1 and W (V1) =
‖V1‖ is the number of vertices in partition. Then

Q(V1, V2) =
cut(V1, V2)
‖V1‖

+
cut(V1, V2)
‖V2‖

(8)

• Normalized cuts [25]. Weight of every vertex is equal to the the sum of
the weights of incident edges, w(i) =

∑
k Eik. Then

Q(V1, V2) =
cut(V1, V2)∑
i∈V1,k∈V Ei,k

+
cut(V1, V2)∑
i∈V2,∈V Ei,k

(9)

Further discussion of the spectral graph partitioning method for clustering
can be found in [6, 26, 17, 22, 7]

2.3 Vector space model connection

It is interesting to define the optimization -cut criteria from the vector model
perspective. It could be easily done for single side graph with nodes correspond-
ing to advertisers and edges carrying weight according to the similarity metric
between advertisers, in our case, the cos of angle between advertiser vectors. It
is convenient to define a centroid vector for a cluster:

CV =
1
N

∑
i∈V

di (10)

Then the cut value can be expressed as

cut(V1, V2) =
∑
Eij

Eij =
∑

i∈V1,j∈V2

cos(di, dj) =

∑
i∈V1,j∈V2

di · dj

‖di‖ ‖dj‖
=
∑
i∈V1

di

‖di‖
·
∑
j∈V2

dj

‖dj‖
=

N1N2(C1 · C2) = (N1N2)2cos(C1, C2) (11)

4

which is a scaled cosine distance between the centroids of the two clusters.
The ratio cut (8) criterion is then equivalent to

Q(V1, V2) =
N1N2(C1 · C2)

N1
+
N1N2(C1 · C2)

N2
= N(C1 · C2) (12)

Thus, minimization of the ratio-cut value corresponds to clustering advertiser
in such groups, that minimizes the cosine similarity between their centroids.

The normalized cuts (9) can also be expressed in the vector model:

Q(V1, V2) =
N1N2(C1 · C2)
N1N(C1 · C)

+
N1N2(C1 · C2)
N2N(C2 · C)

= (13)

N2

N

(C1 · C2)
(C1 · C)

+
N1

N

(C1 · C2)
(C2 · C)

(14)

Thus, normalized cuts optimizes the sum of the ratios of cosine similarity be-
tween the clusters over the cosine similarity between the cluster centroid and
the entire dataset centroid (“average” advertiser).

2.4 Spectral graph partitioning

Spectral graph partitioning problem can be formulated as a global minimiza-
tion of the objective function through the solution of an eigenvalue problem.
The second smallest eigenvector provides the lower bound on the value of op-
timization function and the second eigenvector (Fiedler vector [19]) is used to
construct the partitioning of the graph. The intuition for spectral methods
comes from related physical problem, where we consider a graph as a mesh of
springs connecting masses and look for oscillating modes (standing waves) of
the system. The second eigenvalue will describe the second harmonic of oscil-
lations, which, in fact, divides the mesh into two parts. (Imagine a string fixed
at both ends: the second eigenvalue/vector corresponds to the second harmonic
which has a node in the middle of the string and one side is displaced up and
the other down). Applications of Laplace eigenvalues to graph partitioning have
been extensively studied in literature [20, 21, 14, 12, 13, 15].

Consider partitioning of a graph in two parts and define a partitioning in-
dicator vector p = [−1, .., 1] of ±1 such that for all nodes belonging to one
partition pi = −1 and to the other pi = 1. then Eq. 4 can be expanded and
simplified to

cut(V1, V2) =
∑
Eij

Eij =
1
4

∑
i>j

Eij(pi − pj)2 =
1
8

∑
i,j

Eij(pi − pj)2

=
1
8

(
∑
i,j

Eijp
2
i − 2

∑
i,j

Eijpipj +
∑
i,j

Eijp
2
j)

=
1
4

(
∑

i

p2
i

∑
j

Eij +
∑
i,j

Eijpipj) =
1
4

(
∑

i

p2
iDii −

∑
i,j

Eijpipj) (15)

5

where
Dii =

∑
j

Eij . (16)

For non-weighted graphs Eij = 1 and D is a degree matrix, i.e. every diagonal
element is equal to a degree of the corresponding vertex in the graph - number
of incident edges on that node.

In vector notation Eq. (15) becomes

cut(V1, V2) =
1
4

(pTDp− pTEp) =
1
4
pT (D − E)p =

pTLp

4
(17)

where we introduced a Laplacian matrix of the graph

L = D−E (18)

Laplacian matrix

Laplacian matrix of a graph is an adjacency matrix with diagonal elements
equal to the negative sum of the rest of the matrix elements from the same row.
Thus total sum of the elements in a row of Laplacian matrix is equal to zero.
Formally, Laplacian matrix can be defined as

L =

 −Eij , if ∃ {i, j}, i 6= j∑
k Eik, if i = j
0, otherwise

(19)

The Laplacian matrix is a symmetric positive semi-definite matrix with real
non-negative eigenvalues and a complete set of orthogonal eigenvectors. By
construction, matrix elements in every raw of L sums up to 0 and, thus, e1 =
[1, 1, ...1] is an eigenvector of L with corresponding zero eigenvalue, Le1 = 0.
Since matrix is positive semi-definite, λ1 = 0 is its smallest eigenvalue.

An important theorem due to Fiedler [19] states that the number of con-
nected components in a graph G is equal to number of zero eigenvalues. If there
is only one connected component, the smallest eigenvalue is 0 and the second
smallest eigenvalue is above zero.

Spectral Methods

Classical graph partitioning spectral method minimizes the objective function
Eq.(5). Combining the equations Eq.(5) and Eq.(17) we obtain

Q(V1, V2) = cut(V1, V2) =
pTLp

4
(20)

Thus minimization of the function or finding the smallest cut becomes a problem
of optimizing the value of Eq.(20) with respect to integer-valued ±1 vector p.

The conversion of partitioning problem into integer non-linear optimization
problem does not make it easier, since finding the global minimum of the func-
tion Eq.(20) and the best p requires the exhaustive search over all possible

6

choices of distribution of −1 and 1 in the vector p and this is factorial hard
(NP-hard) problem. But if we relax the problem, by allowing vector elements
to take any real value between −1 and 1, the problem will be moved from a
discrete to continues domain and there exist efficient method for optimization
of continues functions! It is important to understand though, that we will be
looking for an approximate solution to an integer optimization problem. The
original problem, formulated in discrete space have a solution vector existing
only in the corners of a unit hypercube {±1,±1, ...±1}. The continues solution
must be constructed in a such a way, that it also goes through the corners of
hypercube since all possible integer solutions must be part of the continues set.
This requirements can be satisfied by enforcing normalization of the continues
solution vector. Since pT p = N , total number of nodes in the graph, we en-
force ‖x‖ = xTx = N . This equation means that the solution points lie on a
hypersphere centered at the origin and going through the corners of the unit
hypercube.

Thus we have replaced an integer discrete optimization problem Eq.(20) with
continues optimization under the constraint

Q(x) =
xTLx

4
, ‖x‖ = N. (21)

or, using Lagrange multipliers,

Q(x) =
xTLx

4
− λ̂(xTx−N) (22)

Since Eq.(22) is a quadratic form, it can be easily minimized by diagonaliza-
tion. Variational solution to this optimization problem is given by the solution
of eigensystem:

Lx = λx (23)

and minimum of Q(x) is the Rayleigh Quotient reached on x = e1

min
x
ρ(x, L) = min

x

xTLx

xTx
= λ1 (24)

Since e1 = [1, ..1] is an eigenvector of L with zero eigenvalue, which does not
provide a partitioning, we enforce another constraint on the solution: x ⊥ e1.
Then the minimum is achieved on the second eigenvector (this is a special case
of Courant Fischer minimax theorem)

min
x,x⊥e1

xTLx

xTx
= λ2 (25)

As follows from the previous discussion to approximate a discrete solution
from the continues we have to round eigenvector elements to ±1 and thus split
nodes into two sets. One of the possible schemes is to separate elements accord-
ing their sign into positive and negative groups, thus converting x into p using
p = sign(x). If balanced partition is desired, we could use median value of the

7

vector elements as a separator. One can also use grouping of the elements to to
find natural cut boundaries, which corresponds to clustering.

The results of spectral computations could be used for more than just split-
partitioning the graph. Equation (21) can be expanded back to

Q(x) =
xTLx

4
=
∑
ij

Eij(xi − xj)2 (26)

The minimum of this expression is reached when the neighboring elements of
vector x have the smallest difference, thus enforcing global ordering on the
minimizing configuration of nodes. In practice this ordering can be achieved by
sorting elements of the the second eigenvector (in ascending order, for example)
and using indexes into the elements as new indexes for the matrix rows and
columns. In this case various partitions can be achieved by moving separator
along the vector. The optimal position can be determined by heuristics, using
median values to get more balanced cut or explicitly compare some additional
cut values for all bi-partitions. It is possible to do exhaustive comparisons in
this case because there are only N − 1 non-empty partitions can be configured
- nodes are already sorted!. Thus spectral method essentially reduced O(N !)
hard problem to an approximate problem, but with order O(N) complexity.

One can also apply various standard low-dimensional clustering techniques
(K-means, for example) to the eigenvector elements to group them into several
clusters and thus partition the graph into more than two parts. We will explore
this option later.

Generalized Spectral method

One can show [5], that optimizing the function Q(V1, V2) from Eq. (6) is equiv-
alent to optimizing the following weighted Rayleigh quotient

Q(V1, V2) =
cut(V1, V2)
W (V1)

+
cut(V1, V2)
W (V2)

=
qTLq

qTWq
(27)

where elements of vector q take values qi = {+
√
W (V2)/W (V1),−

√
W (V1)/W (V2)}.

Its minimum under the weighted constraint x ⊥ We1 value is achieved on
the second eigenvector

min
x,x⊥We1

xTLx

xTWx
= λ2 (28)

of the generalized eigenproblem

Lx = λWx. (29)

Spectral method for bipartite graphs

Let M be a bipartite graph corresponding to a term-advertiser matrix A with
m terms and n advertisers (in our case m >> n)

M =
(

0 A
AT 0

)
(30)

8

In this ordering, the first m nodes in the graph contain terms and the last n
nodes - advertisers.

To partition this graph using spectral methods, we first formulate a gener-
alized eigenvalue problem that corresponds to global optimization of weighted
function Eq. (29). We use “normalized cuts” (see Eq. (9)) approach for weight-
ing function.

Lz = λWz (31)

The Laplacian matrix for this equation is formed according to definition Eq.(18)

L =
(

D1 −A
−AT D2

)
(32)

and

W =
(
D1 0
0 D2

)
(33)

where D1,ii =
∑

j Aij and D2,jj =
∑

iAij are diagonal matrices with diagonals
equal to correspondingly sums of rows and columns of matrix A. The solution
vector can be thought of as a sequence of m nodes (sub-vector x) corresponding
to bidded terms followed by n nodes (sub-vector y) corresponding to advertisers
z = [x, y]′.

Written out component-wise the eigensystem becomes:(
D1 −A
−AT D2

)(
x
y

)
= λ

(
D1 0
0 D2

)(
x
y

)
(34)

This matrix eigensystem could be solved directly, but its dimension (m+n)
x (m + n) makes such computations expensive. We will transform this system
into equivalent one, but with mxn size.

We start by introducing row and column normalization for data matrix A:

An = D
−1/2
1 AD

−1/2
2 (35)

Substituting the expression of A through An into the system we get

D1x−D1/2
1 AnD

1/2
2 y = λD1x (36)

−D1/2
2 AT

nD
1/2
1 x+D2y = λD2y

Since D1 and D2 are non-singular,

D
1/2
1 x−AnD

1/2
2 y = λD

1/2
1 x (37)

−AT
nD

1/2
1 x+D

1/2
2 y = λD

1/2
2 y

After introducing new variables u = D
1/2
1 x and v = D

1/2
2 y the system can be

expressed as

u−Anv = λu (38)
−AT

nu+ v = λv

9

and simplified to

Anv = (1− λ)u (39)
AT

nu = (1− λ)v

These equations describes SVD decomposition of matrix A with singular values

σ = 1− λ (40)

An = uσvT (41)

and can be computed by solving, for example, for v

(AT
nAn)v = σ2v (42)

and then recovering u by
Anv = σu (43)

We prefer to perform computations using (AT
nAn) instead of (AT

nAn) since this
matrix is nxn and in our case n << m.

Note that because of Eq.(40) we are looking for the second largest eigenvalue
and eigenvector.

Hierarchical spectral clustering

We can easily devise a recursive procedure using spectral method as a parti-
tioning technique on every level. For every subgraph we extract corresponding
adjacency matrix from the graph adjacency matrix and after re-numbering apply
spectral bipartition again. Thus we build a binary tree with leaves containing
nodes. Every leaf will ultimately contain at least one term-advertiser pair, but
might also have several terms corresponding to one advertiser (if that is the
tightest cluster) and vise versa. We devise several stopping criteria for the tree
construction.

Some further ideas for the recursive spectral clustering can be found [4].

3. Implementation

The term-advertiser matrices are very large and sparse and since we are in-
terested only in the second eigenvector, we use Lanczos iterative approach to
numerically solve Eq. (42). The actual implementation is provided in the
Arpack++ library [24, 11]. We use Arpack reverse communication interface
providing the results of matrix vector multiply on every iteration. This product
is computed using an intermediate vector for the storage and consequently cre-
ates Anv = z; Anz = v′. Thus we perform two sparse matrix vector multiply
on every iteration instead of computing combined matrix. In recursive spec-
tral clustering, when the smallest dimension of the matrix becomes less than
m,n < 20, we switch to solving Eq. (34) instead of Eq. (42) and use direct

10

diagonalization methods from LAPACK [8] library . In practice such combined
approach increases overall performance of the system.

Details of the scalable implementation and software library description will
be presented in Part II of this report.

4. Experimental results

In this first part of the report we present results for a small test subset of the
data.

We tested the method on a small and densely connected subset of term-
advertiser data. The data consisted of 3000 unique bidded terms, 2000 unique
advertisers and 92, 344 bids (non-zero elements in matrix).

Figure (1) shows the second (Fiedler) eigenvector of 3000x2000 term-advertiser
matrix with elements sorted in increasing order; terms vector - top image, ad-
vertiser vector - bottom image. Staircase shows three distinct groups of nodes
corresponding to three major clusters. In hierarchical spectral partitioning, we
split this data into two groups using zero line as a separator.

Figure (2) presents ordering of 3000x2000 term-advertiser matrix; bidded
terms are on y axis, advertisers - x axis. Left to right, top to bottom: initial
data, after one path of spectral methods; after 3 levels of binary recursion using
spectral; 8 levels; final ordering.

Finally, Figure (3) demonstrates spectral ordering of large data matrix.
Flat clusters can be obtained from partition tree by “cutting” it on a certain

tree level. Table (1) shows data from several leaf nodes from the 8th level
binary tree created by recursive spectral partitioning. Bidded phrase are shown
one per line, advertiser are not shown; numbers indicates number of terms and
advertiser per cluster (leaf).

5. Conclusions

In this report we demonstrate application of spectral graph partitioning meth-
ods to clustering of bidded term - advertiser datasets. We used “normalized
cuts” approach to create balanced partitions and provided a way to create both
hierarchical and flat clusters based on Fiedler vector. The major advantage of
spectral method over other clustering techniques is its speed and scalability,
which is guaranteed by efficient sparse matrix representation of the data and
iterative eigenvalue computations algorithms.

The second part of this report will contain more implementation details
of recursive procedure, details of experiments with various multi-partitioning
schemes and results for the Overture’s US market dataset.

11

Bibliography

[1] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Re-
trieval. Addison Wesley, 1999.

[2] D. Beeferman and A. Berger. Agglomerative clustering of search engine
query log. In KDD, 2000.

[3] Pavel Berkhin. Survey of clustering data mining techniques. Technical
report, Accrue Software, San Jose, CA, 2002.

[4] David Cheng, Ravi Kannan, Santosh Vempala, and Grant Wang. On a
recursive spectral algorithm for clustering from pairwise similarities.

[5] Inderjit S. Dhillon. Co-clustering documents and words using bipartite
spectral graph partitioning. In Proceedings of the Seventh ACM SIGKDD
Conference, August 26 - 29, pages 268–274, 2001.

[6] Chris H. Q. Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and Horst D.
Simon. A min-max cut algorithm for graph partitioning and data clustering.
In Proceedings of ICDM 2001, pages 107–114, 2001.

[7] Drineas, Frieze, Kannan, Vempala, and Vinay. Clustering in large graphs
and matrices. In SODA: ACM-SIAM Symposium on Discrete Algorithms
(A Conference on Theoretical and Experimental Analysis of Discrete Algo-
rithms), 1999.

[8] Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J.,
Du Croz J., Greenbaum A., Hammarling S., McKenney A., and Sorensen
D. LAPACK Users’ Guide, third edition edition, 1999.

[9] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to
knowledge discovery in databases. Ai Magazine, 17:37–54, 1996.

[10] Chris Fraley and Adrian E. Raftery. How many clusters? which clustering
method? answers via model-based cluster analysis. The Computer Journal,
41(8):578–588, 1998.

[11] Francisco M. Gomes and Danny C. Sorensen. Arpack++. An object-oriented
version of ARPACK eigenvalue package, 2000.

12

[12] Guattery and Miller. On the performance of spectral graph partitioning
methods. In SODA: ACM-SIAM Symposium on Discrete Algorithms (A
Conference on Theoretical and Experimental Analysis of Discrete Algo-
rithms), 1995.

[13] Stephen Guattery and Gary L. Miller. On the quality of spectral separators.
SIAM Journal on Matrix Analysis and Applications, 19(3):701–719, 1998.

[14] Stephen Guattery and Gary L. Miller. Graph embeddings and lapla-
cian eigenvalues. SIAM Journal on Matrix Analysis and Applications,
21(3):703–723, 2000.

[15] Bruce Hendrickson and Robert Leland. An improved spectral graph par-
titioning algorithm for mapping parallel computations. SIAM Journal on
Scientific Computing, 16(2):452–469, 1995.

[16] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Prentice
Hall, 1988.

[17] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good,
bad and spectral.

[18] Hagen L. and Kahng. A. B. New spectral methods for ratio cut partitioning
and clustering. IEEE Transactions on Computer-Aided Design, 11:1074–
1085, 1992.

[19] Fiedler Miroslav. Algebraic connectivity of graphs. Czechosloval Mathe-
matical Journal, 23(98):298–305, 1973.

[20] Bojan Mohar. Graph Theory, Combinatorics and Applications, volume 2 of
Graph Theory, Combinatorics and Applications. John Wiley & Sons, Inc,
1991.

[21] Bojan Mohar. Some applications of laplace eigenvalues of graphs, 1997.

[22] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an
algorithm, 2001.

[23] Christian Posse. Hierarchical model-based clustering for large datasets.
Journal of Computational and Graphical Statistics, 10(3):464–??, 2001.

[24] Lehoucq R.B., Sorensen D.C., and Yang C. ARPACK User’s Guide: Solu-
tion of Large Scaale Eigenvale Problems with Implicitly Restarted Arnoldi
Methods, 1997.

[25] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(8):888–905, 2000.

[26] Deepak Verma and Marina Meila. A comparison of spectral clustering
algorithms.

13

[27] H. Zha, X. He, C. Ding, M. Gu, and H. Simon. Bipartite graph partition-
ing and data clustering. In Proceedings of ACM CIKM 2001, the Tenth
International Conference on Information and Knowledge Management, pp.
25-32, November 5-10, 2001.

14

Node: 12 - 6 Node: 16 - 5 Node: 55 - 41 Node: 29-23

free florist online multi vitamin optimization site web
card consolidation credit flower rose d vitamin ranking site web
debt elimination flower online shop supplement vitamin promotion services site web
consolidation debt free flower online send b vitamin promotion tool web
debt relief flower sympathy discount vitamin promotion site tool web
consolidate debt flower online order herb engine search site submission
debt free anniversary flower b complex vitamin engine registration search
card credit debt flower shop e vitamin engine search submission
debt reduction flower line c vitamin engine placement search service
counseling debt flower funeral vitamin engine internet search
counseling credit bouquet flower herb natural site submission web
bad credit birthday flower calcium registration url

flower online beta carotene promotion services web
flower order acid amino site submit web
buy flower herbal supplement engine search site submit
day flower mother b12 vitamin submission url

green tea add url
ginseng submit url
antioxidant service site submission web
pycnogenol submission
..... engine register search

engine professional search
.....

Table 1: Several leaf nodes the 8th level binary tree created by recursive spectral
partitioning. Bidded phrase are shown one per line, advertiser are not shown;
numbers indicates number of terms and advertiser per cluster (leaf node)

15

-70

-60

-50

-40

-30

-20

-10

0

10

20

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

so
m

e
re

sc
al

ed
 v

al
ue

s

index of sorted node

plots for us.3k.2k

"plot.3k.2k" using 1:5
"plot.3k.2k" using 1:6
"plot.3k.2k" using 1:7
"plot.3k.2k" using 1:2

0

5

10

15

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

so
m

e
re

sc
al

ed
 v

al
ue

s

index of sorted node

plots for us.3k.2k

"plot.3k.2k" using 1:5
"plot.3k.2k" using 1:6
"plot.3k.2k" using 1:7
"plot.3k.2k" using 1:2

Figure 1: Second eigenvector of 3000x2000 term-advertiser matrix with elements
sorted in increasing order plotted together with the values of several optimiza-
tion functions. Terms and advertiser nodes are merged in one vector. Bottom
image is zoomed in version of top. Note that abrupt changes in second eigen-
vector (gaps) correspond to the minima of partition function, thus to optimal
cuts.

16

Figure 2: Ordering of 3000x2000 term-advertiser matrix; bidded terms are on
y axis, advertisers - x axis. Left to right, top to bottom: initial data, after one
path of spectral methods; after 3 levels of binary recursion using spectral; 8
levels; final ordering .

17

Figure 3: Spectral based ordering of term-advertiser matrix. Initial data matrix
and matrix with rows and columns permuted according to spectral ordering

18

