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ABSTRACT

Diffusion weighted magnetic resonance imaging (DW MRI) is a technique that measures the diffusion properties
of water molecules to produce a tensor-valued volume dataset. Because water molecules can diffuse more easily
along fiber tracts, for example in the brain, rather than across them, diffusion is anisotropic and can be used for
segmentation. Segmentation requires the identification of regions with different diffusion properties. In this paper we
propose a new set of rotationally invariant diffusion measures which may be used to map the tensor data into a scalar
representation. Our invariants may be rapidly computed because they do not require the calculation of eigenvalues.
We use these invariants to analyze a 3D DW MRI scan of a human head and build geometric models corresponding
to isotropic and anisotropic regions. We then utilize the models to perform quantitative analysis of these regions, for
example calculating their surface area and volume.
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1. INTRODUCTION

Diffusion weighted magnetic resonance imaging! (DW MRI) is sensitive to random thermal movement of water
molecules known as Brownian motion. Consequently, DWI can be used to detect the diffusion of water molecules in
three dimensions. Because water molecules can diffuse more easily along fiber tracts, for example in the brain, rather
than across them, diffusion is anisotropic and can be used to segment DWI datasets. Since diffusion is characterized
by six independent values at every voxel (which are usually grouped in a symmetric tensor - a 3x3 matrix T),
segmentation and visualization of the data are not entirely straightforward. Moreover, the diffusion matrix is not
invariant with respect to rotations, and the elements that form the matrix will be different for different orientations of
the sample in the scanner and therefore cannot be used for classification purposes. Finally, 3D visualization techniques
available today are designed mostly for scalar and sometimes vector fields. Thus, there are two fundamental problems
in tensor imaging: a) finding an invariant representation of a tensor that is independent of a frame of reference and
constructing a mapping from the tensor field to a scalar or vector field, and b) visualization and classification of
tissue using the derived scalar fields. In this paper we address both issues, developing a new invariant representation
of a tensor field and using it for 3D visualization, segmentation and construction of geometric models.

Traditional approaches to diffusion tensor imaging? involve converting the tensors into an eigenvalue/eigenvector
representation, which is rotation invariant. Every tensor may then be interpreted as an ellipsoid with principal
axes oriented along the eigenvectors and radii equal to the corresponding eigenvalues. This ellipsoid describes the
probabilistic distribution of a water molecule after a fixed diffusion time. The corresponding anisotropy is commonly
estimated as (Amaz/Amin) - the ratio of the maximal to the minimal eigenvalue. A much better measure is fractional
anisotropy,® which measures average restriction of diffusion in all directions:
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where A1, A2, A3 are eigenvalues of the diffusion tensor and A, is the average magnitude of the diffusion (mean
diffusivity):

1
Am = g(/\l + X2 + A3). (2)

Another recently developed approach®® classifies tensors into three categories according to the size of its eigen-
values: 1) the linear case, (\y >> Ay & A3), where diffusion is mainly in the direction corresponding to the largest
eigenvalue, 2) the planar case (A1 & A2 >> A3), where diffusion is restricted to the plane formed by the two eigen-
vectors corresponding to the two largest eigenvalues and 3) the spherical case (A1 = Ay = A3) of isotropic diffusion.
This leads to linear, planar and spherical measures
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that may be combined into one anisotropy measure that describes the deviation from spherical (isotropic) diffusion,

AL+ A2 —2)3

. 4
A+ A2+ A3 ()

Co =C+Cp=

The goal of these methods is the quantitative identification of isotropic and anisotropic tissues. Both methods
have the same drawback - they rely on eigenvalue computations. Though the diagonalization of the 3x3 matrix
is not expensive, it must be repeatedly performed for every voxel in the volume. This calculation may become a
bottleneck for large datasets. For example, computing eigenvalues and eigenvectors for a 5122 volume requires over
20 CPU-minutes on a powerful workstation. Another problem associated with eigenvalue computation is stability -
a small amount of noise will not only change the values but also the ordering of the eigenvalues, which then changes
the orientation of the eigenvectors. Many anisotropy measures depend on the ordering of the eigenvalues (except for
FA (1)), and the calculated direction of diffusion can be significantly altered by the noise normally found in diffusion
tensor datasets. Thus it is desirable to have an anisotropy measure which is rotationally invariant, does not require
eigenvalue computations and is stable with respect to noise. We present tensor invariants with these characteristics
in Section 2.

Visualization and model extraction from the invariant 3D scalar fields is the second issue addressed in this paper.
One of the most popular approaches to tensor visualization represents a tensor field by drawing the ellipsoids derived
from the eigenvectors/values.® This method requires a significant amount of computation, and is slow for large 3D
volumes. Furthermore, ellipsoidal visualization creates visual cluttering in 3D, and is only acceptable for 2D data.
Recently Kindlmann” explored visualization methods where measures (3) were used to convert a 3D tensor volume
into a scalar volume, which is then directly rendered.

In our work we perform iso-surfacing on the 3D scalar fields derived from our tensor invariants to visualize and
segment the data. An advantage of iso-surfacing over other approaches is that it can provide the shape information
needed for constructing geometric models, and computing internal volumes and external surface areas of the extracted
regions. Detailed discussion of the modeling method is given in Section 3. Section 4 presents the results of our tensor
invariant calculations and model segmentation technique with examples from a DWI scan of a human head. Section
5 then describes the quantitative analysis of the geometric models.

Finally, there has been a number of recent publications®? devoted to fiber tracking. This is a different and more
complex task than the one addressed in this paper and requires data with a much higher resolution and signal-to-noise
ratio than the data used in our study.

2. TENSOR INVARIANTS

Tensor invariants (rotational invariants) are combinations of tensor elements that do not change after the rotation of
the tensor’s frame of reference, and thus do not depend on the orientation of the patient with respect to the scanner
when performing DWI. To help better understand the above definition consider a vector (which is a tensor of rank
1). A vector, as a geometric object, does not depend on any coordinate system, but its components - projections on
different axes - do change with the rotation of the coordinate system. In fact, if the rotation of the system is given
by a matrix R, which incorporates the axis and angle of rotation, the values of the components of the vector in the
new, rotated, coordinate system will be v/ = Rv. The length of the vector will stay the same in both coordinate



systems (proof: ||v'|| = ||[Rv]|| = ||R||||v|| = ||V]|), because the rotation matrix is orthogonal with a norm ||R|| = 1.
Thus, the length of the vector is an invariant with respect to rotation of the frame of reference. When length is used
to describe a vector its frame of reference need not be considered.

Similarly, a tensor does not depend on any one frame of reference, but its components, which are in fact projections
of the tensor onto the axes, do depend on the coordinate system and change with rotation of the frame of reference
according to T = RTRT, where R remains the same rotation matrix. Therefore, there is a need for tensor invariants,
i.e. certain scalar functions defined for a tensor that do not change with the rotation of its frame of reference. Group
theory shows that a tensor of rank n has n(n + 1)/2 independent rotational invariants.!® A vector is a tensor of
rank 1, and therefore has only one such value—its length. A diffusion tensor, which is a 3x3 matrix, is a tensor of
rank 2 and accordingly it has three invariants.

In order to present our invariants, we start with the characteristic equation for the eigenvalues of the matrix T,

Tzz - sz Tzz
det|T—XI||=| T,e Ty—A T, |=0.
Tz:c sz Tzz - A
Expanding the determinant leads to the characteristic equation,
XN —D;-X+Dy-A—Ds5 =0, (5)

where the coefficients are

Dy = Tpe+ Tyy + T,

D2 = waTyy - TwyTym + Tmezz - Tszzw + Tnyzz - Tszzy

D3 = T:cm (Tnyzz - szTyz)

sz(Tszzz - TzzTyz) + Tzz (Tszzy - TzzTyy)

The roots of this equation are the eigenvalues of matrix T. It is well known that eigenvalues of a matrix are rotational
invariants of that matrix, which means that the coefficients of the above equation should also be invariant. We can
explicitly prove this statement. For example, for the first coefficient D,

Dy=3 Ti=3 3> RiTuRui =33 oTjx =D Ty =Di, (6)
i i § k ik j

which shows that it does not change under rotations, i.e. the trace of the matrix is a rotational invariant. Following
the same approach one can prove that the two other coefficients, D> and D3 are, also rotational invariants. If the

columns of rotation matrix R are formed from the eigenvectors of T, the resulting transformation when applied to T
will rotate T’s original coordinate system into alignment with the eigenvectors, producing a diagonal tensor. Then

D1 = /\1 + /\2 + /\3
Ds = Ao+ A3+ A3
D3 = MAiX)s3.

Thus, considering the ellipsoidal representation for eigenvalues/eigenvectors, we can see that the proposed invariants
are proportional to the sum of the radii, surface area and the volume of the ellipsoid. Instead of using (A1, A2, A3)
to describe the dataset, one can use (D1, Dy, D3). Moreover, a diagonal representation allows us to express some of
the popular anisotropy measures with our invariants. For example, mean diffusivity is A, = éDl.

Any combination of the above invariants is, in turn, an invariant. We consider the following dimensionless
combination: D;Ds/D3. In the eigenvector frame of reference it becomes
DD A2+ A AL+ A AL+ A
1D2 L2 3 M 3 M 2

Dy O Y Ao X3 Y

and we can define a new dimensionless anisotropy measure
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Figure 1. Slices from our two invariant volumes. a: V; (D1) (left). b: V» (D,) (right).

It is easy to show, that for isotropic diffusion, when A; = Ay = A3, the coefficient D, = 1. In the anisotropic case,
this measure is identical for both linear, directional diffusion (A; >> A2 = A3) and planar diffusion (A} & Ay >> A3)
and is equal to

Da=1[1+ﬁ+§]. )

Thus D, is always ~ Apaz/Amin and measures the magnitude of the diffusion’s anisotropy. We again want to
emphasize, that we use eigenvalue representation here only to analyze the behavior of the coefficient D,, but we do
not need eigenvalues to compute it.

3. EXTRACTING GEOMETRIC MODELS

We have used the invariants presented in the previous section (D;,Ds, D3) to extract geometric models from a
88 x 121 x 60 DWI scan of a human head. We begin by generating two scalar volume datasets based on our
invariants. The first scalar volume dataset (V1) is formed by calculating the trace (D;) of the tensor matrix for
each voxel of the diffusion tensor volume. The second scalar volume dataset (V2) is formed by calculating our three
invariants for each voxel and combining them into D,. The first scalar (trace) volume provides a single number
that characterizes the total diffusivity at each voxel within the sample. Higher values signify greater total diffusion
irrespective of directionality in the region represented by a particular voxel. A slice from this volume can be seen in
Figure 1a. The second scalar calculation provides a measure of the magnitude of the anisotropy within the volume.
Higher values identify regions of greater spatial anisotropy in the diffusion properties. A slice from the second scalar
volume is presented in Figure 1b. The measure D, does by definition not distinguish between linear and planar
anisotropy. This is sufficient for our current study because the brain does not contain measurable regions with
planar anisotropy. We therefore only need two scalar volumes in order to segment our DWI dataset.

These two derived scalar volumes may now be used to visualize structures with differing diffusion properties within
the brain. Two options are available for viewing the scalar volume datasets, direct volume rendering'!"'2 and volume
segmentation'® combined with conventional surface rendering. The first option, direct volume rendering, is only
capable of supplying images of the data. While this method may provide useful views of the data, it is well-known
that finding the exact transfer function that highlights the desired structures may be difficult to construct.'* Our
approach instead focuses on extracting geometric models of the structures imbedded in the volume datasets. The
extracted models may be used for interactive viewing, but the segmentation of geometric models from the volume
datasets provides a wealth of additional benefits and possibilities. The models may be used for quantitative analysis
of the segmented structures, for example the calculation of surface area and volume; quantities that are important
when studying how these structures change over time. The models may be used to provide the shape information
necessary for computational simulation, e.g. EEG/MEG modeling within the brain.!® Creating separate geometric
models for each structure allows for the straightforward study of the relationship between the structures, even
though they come from different datasets, as seen in Figures 6 and 7. The models may also be used within a surgical



Figure 2. Meshes generated with the Marching Cubes algorithm on a: Vy, iso-value = 8.75 (left); b: Vs, iso-value
= 1.36 (right).

planning/simulation/VR environment,'® providing the shape information needed for collision detection and force
calculations. The geometric models may even be used for manufacturing real physical models of the structures.!” It
is clear that there are numerous reasons to develop techniques for extracting geometric models from diffusion tensor
volume datasets.

The most widely used technique for extracting polygonal models from volume datasets is the Marching Cubes
algorithm.'®  This technique creates a polygonal model that approximates the iso-surface imbedded in a scalar
volume dataset for a particular iso-value. The surface represents all the points within the volume that have the same
scalar value. The polygonal surface is created by examining every “cube“ of eight volume grid points and defining a
set of triangles that approximates the piece of the iso-surface within the space bounded by the eight points. While
the Marching Cubes algorithm is easy to understand and straightforward to implement, applying it directly to raw
volume data from scanners can produce undesirable results, as seen in Figure 2. The algorithm is susceptible to noise
and can produce many unwanted triangles that mask the central structures in the data. In order to alleviate this
problem, we utilize a deformable model to smooth the data and remove the noise-related artifacts. Many types of
models have been proposed for extracting structures from volumes.'?'® We utilize level set models* because they
have been shown to be flexible and effective for segmentation.??24 Most importantly, they easily change topology
during deformation and have no fixed parameterization, allowing them to represent complex shapes.

Level set methods produce active deformable surfaces that may be directed to conform to features in a volume
dataset while simultaneously applying a smoothing operation based on local surface curvature. The surfaces are
viewed as a specific level set of a higher-dimensional function ¢ — hence the name level set methods.??> These
methods provide the mathematical and numerical mechanisms for computing surface deformations as iso-values of
¢ by solving a partial differential equation on the 3D grid.26 That is, the level set formulation provides a set of
numerical methods that describes how to manipulate the greyscale values in a volume, so that the iso-surfaces of ¢
move in a prescribed manner. ¢ is a dynamic function of (z,y, z) = s, that changes over time,

o(s,t) = k. (10)

To transform this definition into a partial differential equation that can easily be solved by standard numerical
techniques, we differentiate both sides of Equation 10 with respect to time ¢, and apply the chain rule:
O¢(s,t) ds

ds/dt can be thought of as the movement of a point on a surface as it deforms, and can be expressed in terms of the
position of s and the geometry of the surface at that point, which is, in turn, a differential expression of the implicit

*The VISPACK libraries were used in this study. See http://www.cs.utah.edu/~whitaker/vispack.

0. (11)




Figure 3. Brain ventricles extracted from volume V;. a: slightly oblique view (left). b: coronal,front view (right).

function ¢. This produces another partial differential equation on ¢,

9 _ g, 48
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where F' is a user-defined “speed” term which depends on a set of order-n derivatives of ¢, D™ ¢, evaluated at s, as
well as other functions of s. Because this relationship applies to every level set of ¢, i.e. all values of &, this equation
can be applied to the whole dataset, and therefore the movements of all the level set surfaces embedded in ¢ can be
calculated from Equation 12.

= _V¢F(S7D¢7 D2¢7“‘)7 (12)

For our application F' is a weighted sum of two terms; The first term, F ¢.q4yre, attracts the surface to regions
of high contrast, which are effectively “edges” in the volume. This can be done by calculating the gradient of the
gradient magnitude of the scalar volume datasets after it has been appropriately blurred by some standard filtering
technique. Thus, if G,[I(x)] denotes the convolution of the grayscale image I(x) with a Gaussian smoothing filter
with standard deviation o (we typically used o = 0.5), then

Ffeature(m) =V |VG0[I(w)]| > (13)

where a positive sign moves the surfaces towards maxima and the negative sign towards minima. The second term
F g 00th 1S @ smoothing term defined as a vector of magnitude equal to the mean curvature, K,,,cqr, Of the iso-surface
and a direction, n, which is normal to the surface, i.e.

_ _(y. Y2\ Ve
Fsmooth(w) = Kmeann = (V |V¢|> |V¢| . (14)

The smoothing term is weighted by a factor 3, allowing the user to control the amount of smoothing, and is tuned
for each dataset.

4. MODELING RESULTS

As stated in the previous section, we have generated two new scalar volumes (V; and V,) by calculating and combining
our invariants based on a DW MRI scan of a human head. V; measures total diffusivity, and V%, is the combination D,
at each voxel which provides a measure of the level of anisotropy in the diffusion. We have extracted geometric models
from these two scalar volumes utilizing our modeling and segmentation techniques. While meshes extracted with the
Marching Cubes algorithm may provide the user with an understanding of the basic structure of the data and the
noise included in it (See Figure 2), frequently a smoother, closed model is desirable. Figures 3 and 4 present typical
models that can be extracted from DW MRI volume datasets using our techniques. Figure 3 presents the ventricles
of the brain. This model was extracted from V; using both manual/interactive segmentation tools implemented in



Table 1. CPU-seconds on an SGI Onyx2 (250MHz R10K) for computing three different types of tensor invariants.

Mesh size | Present method Eigenvalues | Eigenvectors

N, =N, =N, Invariants. | Solve cubic eq. EISPACK
64 0.043 0.467 2.756

128 0.403 4.105 22.085

256 3.229 32.874 176.087

512 25.774 262.591 1408.651

our modeling system?’ and the computational level set models described in Section 3. Figures 4 and 5 present the
model extracted from Vs with our level set model. These figures include regions of high diffusion anisotropy, for
example the corpus callosum, the internal capsul, the optical nerve tracks, and other white matter regions. These are
areas of the brain with numerous nerve tracks that restrict diffusion, which are easily isolated with our techniques.

We can also bring together the two models extracted from V; and V, into a single image. Figures 6 and 7 demon-
strate that we are able to isolate different structures in the brain and show their proper spatial inter-relationship.
For example, it can be seen that the corpus callosum lies directly on top of the ventricles, and that the white matter
fans out from both sides of the ventricles.

5. NUMERICAL COMPUTATIONS

The tensor invariants presented in Section 2 have the beneficial property that they are much faster to compute than
the conventional eigenvalue/eigenvector invariants normally used to analyze diffusion tensor data. This is clear from
Table 1 where we have listed CPU times for computing the three different types of tensor invariants mentioned in
this paper for different sizes of the volume dataset. The three timings scale almost exactly as 23, which of course
reflects the fact they measure computation of the invariants exclusively. It follows from this table that our proposed
invariants are one order of magnitude faster to compute than the eigenvalues and approximately 50 times faster
than the calculation of eigenvectors. For the last comparison it should be emphasized that the new invariants do
not include directional information, as does the eigenvector calculation. However, it should be equally clear that
when directional information is not desired our method offers a significant speedup over the conventional approach
— especially for large datasets.

The Marching Cubes algorithm is applied to the volumes generated by the level set stage. We may then compute
useful quantitative information, e.g. total area, volume, and Gaussian curvature, from the resulting polygonal model.
The Marching Cubes algorithm produces a triangle mesh consisting of vertices and associated normal vectors. Thus,
the total area of the mesh is computed by adding the areas, A;, of each triangle

1
4i = 5@} —v) x (0} — o)) (15)
where v¥ is the k’th vertex of triangle i. The calculation of volume for the polygonal model is not as straightforward.
First we assume that all of the extracted models are composed of closed polygonal surfaces. Next, using a simple idea
by Eberly et al.?® one can convert the volume calculation to a surface integral by means of the divergence theorem,

///VV-FdV=//SF-ndS, (16)

where V - F is the divergence of an arbitrary vector function F and V is a volume in R? enclosed by the surface S
with associated normal vectors n pointing outwards. If we choose F = (agz,ayy, a,z) such that o, + oy + a, =1,
then V - F = 1 and the left hand side of Equation 16 becomes the desired volume, V. Using standard integration
theory, we can approximate the right hand side of Equation 16 with the Reimann sum,

Npoty

V=~ Z V; - ’nz'A,' (17)
i=1



Figure 4. Model of anisotropic regions extracted from volume Vs. a: sagittal view (left). b: coronal front view
(right).

Figure 5. Model of anisotropic regions extracted from volume V,. a: axial,top view (left). b: axial,bottom view
(right).



Figure 6. Combined model of ventricles and (semi-transparent) anisotropic regions. a: sagittal view (left). b:
coronal,front view (right).

Figure 7. Combined model of ventricles and (semi-transparent) anisotropic regions. a: axial,bottom view (left). b:
coronal,rear,exploded view (right).



Table 2. Values of volume V, surface area A, total norm of the Gaussian curvature |[K| and total polygon count
Npoiy before and after the application of our level set model.

Dataset | V(em®) [ Alem?) | K| | Npoty ||
Before(V;) | 18 331 | 204 | 39404
After(Vy) | 33 203 | 152 | 36664
Before(Vs) | 98 760 | 2673 | 142212
After(Vs) 87 473 | 188 | 81488

where v; = (@, 0yYi, 2 2;) is a point on the i’th triangle with the associated normal vector n; pointing outwards
and the area A; given by Equation 15. As stressed by Eberly et al. the choice of a;, ay, and @, is crucial in
obtaining a good estimate of the volume. They describe a scheme for assigning values of the aj based on an
estimated bounding box around each closed surface, but this requires additional mesh connectivity information.
Such information can of course be computed, but in our study where the Marching Cubes algorithm can generate
very large numbers of closed surfaces this becomes very tedious and time-consuming. Instead, let us consider the
special case v; = %(wi,yi, z;) = %Ci (i.e. af = %), where C; is chosen as the centroid of the i’th triangle. This leads
to the expression

1 Npoly
i=1
where we have defined the local vectors
C: = (vi+v?+v3)/3 (19)
N; = (v; —v]) x (v; —v}). (20)

The geometric interpretation of Equation 18 is a signed sum of the pyramids with a base composed of the i’th triangle
and a top vertex at the origin. We finally stress that the derived expression for an estimate of the total volume does
not assume any knowledge of the connectivity of the triangular mesh.

Finally, in order to obtain a quantitative measure of the smoothness of the extracted triangular mesh we calculate
a norm of the total Gaussian curvatures as follows. At each vertex the local Gaussian curvatures K is given by

L[ B = B+ 200Gy el
(02 05+ 92 | 62(basbyy — Guyo) + 2600y (Buz by — bo26ar)

where for example ¢,, denotes the second order partial derivative of the volume with respect to the directions z and
2.25 The first and second order partial derivatives in Equation 21 can be approximated by finite-difference schemes.
To obtain a measure of the total smoothness of the triangular mesh we found it useful to define the following total
norm of the Gaussian curvature

Kl = o > IKilAi (22)

where for each triangle ¢ we define the average Gaussian curvature from the associated three vertices

K =KW +£® + k3. (23)

Equation 22 is an approximation of a special case of the Gauss-Bonnet theorem?® that states that the surface integral
of the Gaussian curvature (with sign) equals 27 E where E is the Euler-Pointcaré characteristic of the smooth surface
(E = 2 for closed surfaces). Hence, to calculate a measure of the overall curvature, and not just the total number of
closed surfaces, Equation 22 employs the absolute value of the Gaussian curvature.

Table 2 lists values of the total volume, surface area, norm of the Gaussian curvature and polygon count for the
models extracted from our two derived scalar volume datasets (V; and V), before and after the level set algorithm



is applied to the volumes. Comparing the first two rows for volume V;, we note that after the level set algorithm
is employed the total volume increases, which is due to the closing of holes and cavities in the extracted surface.
Meanwhile, the surface area decreases, which is caused by the removal of internal structures. We also note that the
total norm of the Gaussian curvature decreases due to the smoothing imposed by the level set model. Additionally,
the polygon count drops, because of the simplified form of the final extracted triangular mesh. A similar behavior is
observed when processing volume V, (the last two rows of Table 2), except that the volume now decreases. This is
caused by the removal (i.e. collapse) of small high frequency fragments cluttering the model.

6. CONCLUSION

In this paper we have proposed an alternative set of invariants that may be derived from diffusion tensors. We
have shown that they are faster to compute than previous methods. These invariants may be used to generate
scalar volumes that characterize the total diffusivity and diffusion anisotropy of a DW MRI scan of a human head.
Applying modeling and segmentation techniques to the derived scalar volumes creates geometric models of specific
brain structures, e.g. the ventricles, corpus callosum, and the internal capsul. The geometric models may then be
used for quantitative analysis, e.g. volume and surface area calculations.
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