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Summary. In this chapter, we examine the problem of Web community identifica-
tion expressed in terms of the graph or network structure induced by the Web. While
the task of community identification is obviously related to the more fundamental
problems of graph partitioning and clustering, the basic task is differentiated from
other problems by being within the Web domain. This single difference has many im-
plications for how effective methods work, both in theory and in practice. In order of
presentation, we will examine bibliometric similarity measures, bipartite community
cores, the HITS algorithm, PageRank, and maximum flow-based Web communities.
Interestingly, each of these topics relate to one-another in a non-trivial manner.

1 Introduction

A Web community can be loosely defined as a collection of Web pages that
are focused on a particular topic or theme. Viewed from the framework of tra-
ditional information retrieval, the problem of community identification would
be expressed in terms of document content or explicit relations between doc-
uments. However, given the hyperlinked structure of the Web, the community
identification problem can be reformulated so as to exploit the implicit rela-
tions between documents that are formed by hyperlinks.

To leverage the existence of hyperlinks, we model the Web as a graph where
vertices are Web pages and hyperlinks are edges. While Web pages may be
similar in terms of textual or multimedia content, a hyperlink is usually an
explicit indicator that one Web page author believes that another’s page is
related or relevant. By examining the structure of hyperlinks on the Web, one
can identify communities of Web pages that are more tightly coupled to each
other than they are to pages outside of the community. Using hyperlinks in this
manner—independently or in addition to using text—allows for communities
to be identified in a manner that is less sensitive to the subtleties of language.
Moreover, by keeping text and hyperlinks separate, one can use the two to
co-validate each other.



2 Gary William Flake et al.

Mining Web communities is an interesting problem viewed from mathe-
matical, scientific, and engineering viewpoints. Mathematically, the problem
is interesting because any effective solution must make a compromise between
the quality of the solution and the runtime resources of the algorithm. How
these two constraints are traded-off touches on deep questions related to fun-
damental clustering algorithms. Scientifically, identified Web communities can
be used to infer relationships between Web communities, the pages that form
the communities, and the users that author and visit the community mem-
bers. Hence, Web community identification can be used to dissect the Web
so as to make it a tractable subject of scientific investigation. Finally, from
the engineering point of view, Web community identification can be used to
build many applications, including portal regeneration, niche search engines,
content filters, and personalized search.

So how does community identification differ from mining relations within
a database? The Web differs from most databases in the following aspects:

e The Web is completely decentralized in organization and in evolution.
Hyperlinks can be strong or weak indicators of relevance, or completely
counter-informative in the case of spam; hence, a lack of centralized au-
thorship makes the Web’s hyperlinks not only disorganized when viewed
on a large scale, but inconsistent when viewed on a small scale (unlike the
regularity of relations within a database).

e The Web is enormous [Lawrence and Giles, 1999]. As of 2003, typical
search engine index size is approximately two billion documents, which
represents a mere fraction of the whole of the Web. Web pages may not
be indexed for a variety of reasons, including (1) prohibition due to robot
exclusion rules, (2) falling behind corporate or personal firewalls, (3) be-
ing reachable only through a search form, or (4) simply not being popular
enough (in in-bound link cardinality) for indexing. Assuming a conserva-
tive average document size of 10KB, the indexable Web is at least 20TB
in size, making it larger than most other databases excepting offline data
warehouses.

e The Web is distributed unlike anything else in the world. Not only is the
Web distributed over multiple computers, it spans organizations, Internet
domains, and continents.

That’s the bad news. Worse yet, being related to clustering and partition-
ing, community identification is NP-complete even with mild assumptions.
Superficially, the preceding facts suggest that mining the Web for communi-
ties is hopeless. However, there is considerable good news to counter-balance
the bad:

e The Web is self-organized and contains a considerable amount of ex-
ploitable structure [Flake et al., 2003]. Hyperlink distributions obey power-
law relationships [Barabasi and Albert, 1999]; Many hyperlink patterns
(Web rings, hierarchical portals, and hubs and authorities) are found re-
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peatedly on the Web; Text and hyperlinks are closely correlated; and sim-
ple generative network models explain a considerable amount of the Web’s
structure [Pennock et al., 2002].

e The Web graph is exceedingly sparse. Being read and written (mostly)
by humans, typical Web pages have a relative small number of hyperlinks
(only dozens) when compared to the numbers possible if the Web graph
were dense (billions). As a result, the graph structure of the Web can be
compactly represented. Moreover, this sparseness make algorithms much
more well-behaved than the worst-case scenario.

e Finally, being structured and sparse, the Web can be successfully mined
by approximate techniques that, while technically sub-optimal in solution
quality, empirically yield very good results.

The bulk of this chapter is devoted to this last point. We begin with a
brief introduction to clustering and to bibliographic similarity metrics, which
is followed by an introduction to bipartite community cores. Next, we exam-
ine the PageRank and HITS algorithms and see how they relate to spectral
properties of the Web graph. We follow with a detailed section on maximum
flow methods for community identification, which includes theoretical and ex-
perimental results. Finally, we conclude with a discussion on future work in
this area. Throughout this chapter, we will see how each of the methods for
community identification relate to one another in such a way that each is
easier to understand and appreciate when given in the context of the other
methods.

2 Background

The goal of clustering is to group “similar” objects together while keeping
“dissimilar” objects apart, with “similarity” being a function of the attributes
of the objects being clustered. More formally, a clustering of n objects is a
partitioning into k different sets so as to minimize some cost of assigning
objects into sets. Regardless of the algorithm and the data source, the quality
of a clustering can be measured in multiple ways [Fasulo, 1999]. No single
measure for cluster quality is perfect [Kleinberg, 2003]; instead, all measures
for cluster quality actually reflect a trade-off between how mistakes and sub-
optimalities within a clustering are weighted relative to one another.

The task of community identification can be considered a slight simpli-
fication of clustering in that one is only required to identify a grouping of
items that are similar to some seed set of elements. In other words, commu-
nity identification is akin to asking “What are the members of the cluster
that contains S?” where S is a seed set. Note that a community identification
algorithm can easily be turned into a clustering algorithm (and vice-versa), so
the distinction between the two is not very significant theoretically. However,
in practice, finding a Web community is vastly simpler than finding all Web
clusters because of the size of the Web.
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It is beyond the scope of this chapter to survey all clustering methods.
Instead, we refer the reader to this survey [Murtagh, 1983] and make connec-
tions between Web methods and more classical clustering approaches when
appropriate.

2.1 Notation

Throughout this chapter we will represent the Web (or a subset of the Web)
as a directed graph G = (V, E), with n = |V| vertices in set V, and m = |E|
edges in set E. Each vertex corresponds to a Web page, and each directed edge
corresponds to a hyperlink. When appropriate, we will refer to an edge by a
single symbol, such as e € E or as a node pair (u,v) € E with u,v € V. In
the latter case, (u,v) is the directed edge that starts at u and ends (points to)
v. It may also be necessary to associate a real valued function with an edge,
such as a flow function, f(e) = f(u,v), or a capacity function, c(e) = ¢(u,v).

Graphs can be equivalently represented as an n x n adjacency matrix, A,
with Ay, = 1if (u,v) € E (i.e., page u links to page v) and A,, = 0 if no
direct hyperlink exist from u to v. Note that all matrices will be written in
bold uppercase Roman and vectors in bold lowercase Roman.

The degree of a vertex is the number of edges incident on the vertex.
The in-degree (respectively out-degree) of a vertex is the number of in-bound
(respectively out-bound) edges incident on the vertex. We denote the in-degree
and out-degree of v by di" and d9'*, respectively. Other functions or attributes
of vertices will be similarly represented by a symbol with a vertex subscript.

3 Bibliographic Metrics & Bipartite Cores

Identification of a Web community can be done in several ways. One of the key
distinguishing features of the algorithms we will consider have to do with the
degree of locality used for assessing whether or not a page should be considered
a community member. On the one extreme are purely local methods which
consider only the properties of the local neighborhood around two vertices
to decide if the two are in the same community. Global methods operate at
the other extreme, and essentially demand that every edge in a Web graph
be considered in order to decide if two vertices are members of the same
community. We begin with two related local methods.

3.1 Bibliographic Metrics

We started this chapter by noting that a hyperlink between two pages can be
an explicit indicator that two pages are related to one another. However, we
should also note that not all related pages are linked. In fact, for many Web
pages, what they link to and what links to them may be more informative if
considered in the aggregate.
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Fig. 1. Graphic portrayal of bibliographic metrics, (a) bibliographic coupling, and
(b) co-citation coupling. For vertices v and v, the similarity metric is shown as the
amount of overlap that vertices have in the set of in-bound neighbors or out-bound
neighbors.

Figure 1 illustrates two complementary metrics known as bibliographic cou-
pling and co-citation coupling. In the figure, we see that the two metrics count
the raw number of out-bound or in-bound references, respectively, shared by
two pages u and v. Both metrics were originally formulated to capture sim-
ilarity between scientific literature [Kessler, 1963, Small, 1973] by comparing
the amount of overlap between the bibliographies or referrers for two different
documents [Garfield, 1979, White and McCain, 1989).

Considering the Web as graph with adjacency matrix A, the product AA”
captures the bibliographic coupling between all page pairs such that (AAT),,
equals the bibliographic coupling between pages v and v. Similarly, the prod-
uct (AT A),, equals the co-citation coupling between u and v.

While bibliographic metrics are simple, intuitive, and elegantly represented
by linear algebra, they have several practical shortcomings. First, both ma-
trices AAT and AT A will usually be far more dense than A, making storage
an issue. Second, some pages may link to or be linked by thousands of other
pages, making them have a large amount of link overlap with a disproportion-
ate number of pages.

While the first issue is not easily solved, the second can be easily addressed
with normalization. We explain the normalization step in terms of out-bound
hyperlinks (i.e., a normalized form of bibliographic coupling) but the basic
method can be generalized to hyperlinks in either direction. Let U and V
denote sets of vertices that are out-bound from pages u and v, respectively.
The quantities:

2UNV| UMV
or
[Ul+[V] — [UuV|

(1)
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Fig. 2. Graphic portrayal of a complete bi-
partite graph, G4, with each vertex on the
left (set L) linking to each vertex on the
right (set R). As a bipartite core, G24, could
be embedded within a larger graph that has
edges that obscure the bipartite core, for ex-
ample, linking from vertices in R to L, R to
R,LtoL,orV—(LUR)to (LUR).

AN

range between 0 and 1 and represent the normalized number out-bound links
shared between u and v. One can also generalize normalization methods from
text processing, such as TF x IDF to work for hyperlinks [Giles et al., 1998],
or even go so far as to use the Pearson correlation between two rows in A.3

3.2 Bipartite Cores

Bibliographic metrics (especially when normalized) are effective for charac-
terizing the degree of similarity between two pages in terms of what they link
to and what links to them. What is missing in this framework is the notion
that a collection of pages can be related to each other in an aggregate sense.

A complete bipartite graph is a directed graph with vertices that can be
divided into two sets, L and R (for left and right) with LUR = V and
LN R = g, such that each vertex in L has an edge to each vertex in R. We
use the notation, Gy, to denote a complete bipartite graph with I = |L| and
r = |R|. A bipartite core is a subgraph that when considered by itself, forms
a complete bipartite graph. Note that this definition for a bipartite core does
not preclude vertices (in either of L or R) from linking to—or be being linked
by—other vertices outside of L and R, nor does it prohibit edges flowing from
R to L. The definition states that being fully connected from L to R is both
necessary and sufficient. Figure 2 shows an example bipartite subgraph, Gay.

Bipartite subgraphs are relevant to Web communities for at least two rea-
sons that subtly relate to one another. First, a bipartite core, G}, has the prop-
erties that all vertices in L have a bibliographic coupling value lower-bounded
by r and all vertices in R have a co-citation coupling value lower-bounded by
[. Thus, bipartite subgraphs consist of vertices that have a minimal degree of
similarity in terms of raw bibliographic metrics.

The second reason why bipartite subgraphs are relevant to Web communi-
ties is because they empirically appear to be a signature structure of the core
of a Web community [Kumar et al., 1999]. Intuitively, authors of Web sites

3 Make each row (or column) zero mean, unit variance, and take their dot product



Methods for Mining Web Communities 7

on the same topic may explicitly chose not to link to one another if the sites
are competitive with one another (commercial sites in the same industry) or
if they idealistically opposed (pro-X versus anti-X sites). Nevertheless, other
Web site authors may chose to link to both competitive sites, thus making the
two competitors have a non-zero co-citation coupling. In a similar manner, a
reference Web site—say one that contains links to auto companies—will have
a link pattern that resembles other auto reference sites. Two general auto
references will probably not link to one another, but they will often have a
high degree of bibliographic coupling. In this way, the structure of a bipartite
core captures the dual nature of Web pages, namely, that general pages link
to specific pages, and that pages about the same general topic or specific topic
will often have similar references or referrers.

Kumar et al. [Kumar et al., 1999] used all of these empirical observations
to devise an efficient procedure to identify bipartite cores from a Web corpus.
In a subset of the Web (approximately 200 million Web pages), Kumar et al.
found over 100,000 bipartite community cores, some being as large as Ggg-
Interestingly, even the smallest identified cores (G33 and G35) were topically
focused on an identifiable theme in 96% of the samples examples. Examples
topics included:

e Japanese elementary schools
e Hotels in Costa Rica
e Turkish student associations

Hence, the identified community cores were usually topically focused and so
specific that they were often not part of any preexisting portal hierarchy. This
last point is important because it means that community cores are “natural” in
the sense that they are self-organized, and not an artifact of a single individual.

4 Spectral Methods

The previous section focused on local methods where the affinity between two
pages could be determined by examining the local region about one or two
pages. In this section we focus on global methods that essentially consider all
links in the Web graph (or subgraph) to answer the question “do these two
pages belong with each other.” We begin with a brief survey of linear algebra
and eigenvectors.

4.1 Linear Algebra and Eigenvectors

Any real-valued semi-positive n xn matrix, M, can be equivalently represented
as a summation of vector outer-products:

k
M = Aler/ (2)
=1
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where 1; and r; are respectively the ith left and right eigenvectors of M, A;
is the ith eigenvalue of M, and M has all of the following properties with
respect to its eigenvectors and eigenvalues:

Ail; = Mr;, 3)
Air; =M1, (4)
17, = ey =71, = 1, for all 4, (5)
17r; =0, fori#j,and (6)

A > Aigr for all 4. (7)

The eigenvalues and eigenvectors form the spectrum of a matrix; hence,
the reason why algorithms that make use of eigenvectors and eigenvalues are
often referred to as spectral methods. If the spectrum of a matrix is full (i.e., it
contains n distinct eigenvectors), then either the left or right eigenvectors can
be used as a basis to express any n-dimensional vector. If M is symmetric, then
the left and right eigenvectors of M are identical; however, for an asymmetric
matrix, the left and right eigenvectors form a contravariant basis with respect
to each other.

The key intuition behind the eigen-decomposition of a matrix is that it
yields a procedure for compressing a matrix into £ < n outer-products, and
for expressing matrix-vector products as a summation of inner products.

4.2 HITS

Kleinberg’s HITS [Kleinberg, 1998] algorithm (which stands for hyperlink-
induced topic search) takes a subset of the Web graph and generates two
weights for each page in the subset. The weights are usually referred to as
the hub and authority score, respectively, and they intimately relate to the
spectral properties of the portion of the Web graph for which the algorithm
is being used.

Conceptually, a hub is a Web page that links to many authorities, and
an authority is a Web page that is linked by many hubs. The two scores for
each page characterize to what degree a page obeys the respective property.
Referring back to Figure 2, we can see that pages on the left side of a dense
bipartite core are hubs, and pages on the right are authorities.

HITS is actually performed in two parts. The first is a preprocessing step
used to select the subset of the Web graph to be used, while the second part
is an iterative numerical procedure. The first part usually proceeds as follows:

1. Send a query of interest to the search engine of your choice.

2. Take the top 200 or so results from the search engine.

3. Also identify all Web pages that are one or two links away (in either
direction) from the results gathered in the previous step.

All told, the first part generates a base set of Web pages that either contain
the original query of interest, or are two links away from a page that does. Of
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course, other heuristic constraints need to be used, such as limiting the total
number of pages, only considering inter-domain hyperlinks, and changing the
size of the initial result set and/or the diameter of the base set.

With the base set of pages being generated, let G = (V, E) refer to this
subset of the Web graph (with intra-domain hyperlinks removed)* and let A
be this graph’s adjacency matrix.

The iterative numerical part of HITS updates two |V| x 1 dimensional
vectors, h and a, as follows, with the initial values of both vectors being set
to unity:

a=A"h (8)
h = Aa (9)
a=a/|lall? (10)
h = h/||h||* (11)

In plain English, Equation 8 says “let a page’s authority score be equal to the
sum of the hub scores of the pages that link to it,” while Equation 9 says “let
a page’s hub score be equal to the sum of the authority scores that it links
to.” The remaining equations enforce h and a to maintain unit length.

After iterating the equations, we select the authority pages to be those
with the largest corresponding value in a, and the hub pages to be the ones
with the largest corresponding value in h.

HITS is a close cousin to the power method [Strang, 1980] for calculating
the eigenvector of a matrix with the largest eigenvalue (the maximal eigenvec-
tor). Both procedures converge to a stable solution with a very small number
of iterations. With minimal substitution, we can see that h and a converge
to the maximal eigenvectors of AAT and AT A. Thus, HITS produces a rank
one approximation to the raw bibliographic and co-citation coupling matrices.

4.3 PageRank

The PageRank algorithm [Brin and Page, 1998] is motivated by a random
walk model of the Web. At any given time step, a random walker exist on a
Web page and can do one of two things: (1) with probability € it can “teleport”
to random Web page (chosen uniformly from all pages), or (2) with probability
(1—e¢) it can move from its current location to a random page that it currently
points to. If we repeat these steps, each Web page will ultimately have a
stable and computable probability of being visited by the random walker; this
probability is equivalent to the PageRank value of a page.

We can explicitly calculate the PageRank, r,, of page v with the following
iterative procedure:

7
€ T
ritl = ~+(1-9 > e (12)

u(u,w)€EE ¥

4 This step reduces the impact of nepotism.
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where € is typically set to something small (say 0.1) and superscripts on r, are
used only to indicate time dependencies and that all values should be simul-
taneously updated. Additionally, after each iteration, r must be normalized®
so that > r, = 1.

Intuitively, PageRank enforces the recursive idea that pages are important
if important pages link to them. PageRank is used as a means to effectively
boost the ranking of a Web pages that all match the same query.

PageRank relates to the spectral properties of A in the following way. Let
M be the equal to A except that M has its rows normalized so that they all
sum to 1. Let U be the n x n matrix with all components equal to % The
PageRank vector, r is the maximal eigenvector of:

U+ (1-eM)” (13)

provided that G is ergodic, which means that in the limit (as time goes to
infinity), the random walker has a non-zero probability of revisiting every
page. A Web graph with pages that have no out-bound links or sink regions—
regions that once entered cannot be escaped through forward links—break this
constraint. Nonetheless, it is helpful to see that PageRank converges to the
maximal eigenvector of something like a “well-behaved” version of A (where
“well-behaved” means ergodic and out-bound weight normalized).

4.4 Discussion

Interestingly, HITS has a random-walk interpretation similar to that of PageR-
ank [Lempel and Moran, 2000]. A HITS random walker does not need the
“teleport” step, but it does need to alternate between two different types of
moves done relative to its current location: (1) follow a random out-bound
link, (2) follow a random in-bound link (i.e., as if to reverse the direction).
If these moves are repeatedly done in order (move (1) followed by move (2)),
then after each pair of moves, the random walker will be at a page that has
some non-zero amount of bibliographic coupling with the page that it was
in the previous step. The greater the bibliographic coupling, the greater the
probability that the random walker will end up at a page. If we were to run
this procedure forever, then the probability of visiting a page would be propor-
tional to the hub score of a page (with scaling differences due to normalizing
to sum to 1 instead of sum of squares to 1).

If we re-order the moves and do (2) followed by (1), then the random
walker will have behavior that is characterized by the authority score vector.
In this scenario, the probability of moving from one page to another is related
to the amount of raw co-citation coupling between two pages.

In either case, it is interesting to see that both HITS and PageRank can be
described in terms of the spectral properties of an adjacency matrix as well the
long-term behavior of a random walker. However, at first glance, neither HITS

5 The normalization step is required only when G is not ergodic.
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nor PageRank appear to be methods for community identification. HITS uses
an initial query to limit the neighborhood of the Web graph from which to
score pages, and PageRank is usually coupled to a secondary text retrieval
step that is used to filter results. Hence, in the usual implementation, each
method has a crucial dependency on text. However, both HITS and PageRank
can be adapted to the problem of community identification.

HITS Communities

Recall, from Equation 2, that a matrix can be rewritten as a summation of
outer products. Because both of the matrix products ATA and AAT are
symmetric and positive definite, each will have the property that the left and
right eigenvectors will be identical (because of symmetry) and that the first
eigenvector will have all positive components (with positive eigenvalue).

All other eigenvectors for these matrices can be heterogeneous in that their
elements can have mixed signs. These subsequent eigenvectors can be used to
separate pages into different communities in a manner related to more classical
spectral graph partitioning [Chung, 1996], or in a manner that is related to
principal component analysis [Jolliffe, 1986].

Kleinberg [Kleinberg, 1999] and his collaborators [Gibson et al., 1998] have
found that the non-maximal eigenvectors can be used to split pages from a
base set into multiple communities that contain similar text but are dissimilar
in meaning. Example include:

o Abortion: with communities split along pro-choice, and pro-life camps;
e Jaguar: with communities split among the various meanings (football
team, animal, car, operating system, video game, etc.);

In this manner, HITS, can be adapted for community identification. The main
caveat to spectral approaches is that as the size of the communities get smaller,
the less significant eigenvectors can be dominated by noise and confused by
paths of longer length. Nevertheless, the approach has considerable power and
spectral methods offer a very elegant mathematical derivation.

PageRank Communities

PageRank can generalized into a form known as topic sensitive PageRank
[Haveliwala, 2002] that replaces the uniform “teleportation” term in Equa-
tion 12 with a non-uniform term:

t
/r.u

M- Y an (1)
w(uv)eE ¥

with the constraint that »°, p, = 1. The value of p, (for all v) is chosen so
that it reflects the probability that the random walker should land on a page,
v, during one of its “teleportation” steps.
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The intuition behind topic sensitive PageRank is that the random walker
moves about as before with the exception that on “teleportation” the walker
moves to a page that is focused on some particular topic. For all known pages,
v, on the topic, we can set p, to some non-zero value. In this way, the random
walker is similar to a Web surfer that browses as normal, but periodically
restarts to a smaller set of favorite bookmarked pages.

This basic procedure can be used to identify a community of pages by using
the topic sensitive score to filter pages. Pages that belong to the community
are those that have a probability of being visited greater than some threshold;
everything else is outside of the community.

5 Maximum Flow Communities

So far, we have characterized community identification methods as being ei-
ther local or global. In this section we will consider the Community Algorithm
[Flake et al., 2000, Flake et al., 2002], which has both local and global proper-
ties. It can operate over the entire Web graph or a sub-graph; it has worst-case
time complexity that’s a function of the whole of the Web, yet in practice it
is fast because its runtime is often dominated by the size of the community
that it finds (and not the whole graph). Moreover, it yields communities that
have strong theoretical guarantees on their local and global properties.

The Community Algorithm achieves these properties by recasting the
problem into a maximum flow framework. We begin with a subsection de-
scribing s-t maximum flows, minimum cuts, and a simple procedure for solving
the s-t maximum flow problem. Next, we describe the Community Algorithm
along with a few variations of it. We follow with analysis, less formal discus-
sion, and conclude this section with experimental results.

5.1 Max Flows & Min Cuts

While flows and cuts are well-defined for both directed and undirected graphs,
we will restrict the domain to undirected graphs to simplify some definitions
and to clarify later analysis. Note that any directed graph can be converted
into an undirected graph by treating each edge as being undirected. Thus,
let G = (V, E) be henceforth understood as an undirected graph, and for all
edges (u,v) € E let ¢(u,v) denote the capacity of an edge. By convention, we
say that c(u,v) =0 if (u,v) does not exist.

Given two vertices, s and t, the s-t maximum flow problem is to find the
maximum flow that can be routed from s to ¢ while obeying all capacity
constraints of ¢(-) with respect to G. Intuitively, if edges are water pipes and
vertices are pipe junctions, then the maximum flow problem tells you how
much water you can move from one point to another.

Ford and Fulkerson’s [Ford Jr. and Fulkerson, 1956] “max flow-min cut”
theorem proves that the s-t maximum flow of a graph is identical to the
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Table 1. The augmenting path maximum flow algorithm.

1 procedure MAX-FLOW(graph: G = (V, E); vertex: s,t)
2 set R <— residual network of G
3 while R contains a directed path from s to ¢ do
4 identify shortest augmenting path, P, from s to t
5 set § = min (r(u,v) : (u,v) € P)
6 for all (u,v) € P do
7 set r(u,v) «— r(u,v) —
8 set r(v,u) +— r(v,u) +d
9 end for
10 end while
11 return R
12 end procedure

minimum cut that separates s and ¢. The intuition behind the theorem is
that flows are limited by bottlenecks, and by removing the same bottlenecks,
one can separate two points in a network. Many polynomial time algorithms
exist for solving the s-t maximum flow problem and the curious reader should
definitely consult a dedicated text for a more thorough discussion of cuts
and flows [Ahuja et al., 1993]. flow algorithm to better convey some intuition
behind the problem and the algorithm.

Table 1 gives pseudo-code for the augmenting path maximum flow algo-
rithm, which is the simplest maximum flow algorithm known. The procedure
operates on a residual network which is a data structure used to keep track of
edge capacities, both used and available. The residual network, R = (V, E'), of
G has two directed edges for every undirected edge in E; hence, for (u,v) € E,
E' will have both (u,v) and (v,u). The residual capacities in R are initialized
by r(u,v) = r(v,u) = c(u,v) for all (u,v) € E.

We say that R has an augmenting path from s to ¢t if there exists a path
connecting the two vertices such that each directed edge along the path has
non-zero residual capacity. At line 5 of the procedure, we identify the smallest
capacity value along the path, P. Lines 6-9 remove the available capacity
from the residual network along the path; if r(u,v) becomes zero, we treat
that edge as no longer being available. In this way, the procedure simply forces
flow from s to t until no more flow can be passed. Finally, at line 11, when
there are no more paths from s to ¢, we return R, which contains sufficient
information to easily find the s-# minimum cut or maximum flow of G—
but more importantly—R can be used to find a connected component that
contains s.
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Fig. 3. Maximum flow methods
will separate the two subgraphs
with any choice of s and ¢ that has
s on the left subgraph and ¢ on the
right subgraph, removing the three
dashed links.

5.2 The Community Algorithm

We now define communities in terms of an undirected graph where each edge
has unit capacity. The definition can be generalized for non-unit capacity
edges, but cannot be easily generalized for the directed case.

Definition 1. A COMMUNITY is a vertex subset X C V, such that for all
vertices v € X, v has at least as many edges connecting to vertices in X as it
does to vertices in (V — X).

Note that this definition is slightly recursive in that it leads to statements of
the form “a Pokémon Web site predominately links more Pokémon sites than
non-Pokémon sites.” Figure 3 shows an example of a community (on the left)
being separate from the rest of the graph (on the right).

Interestingly, the questions “Does some graph contain a community?” is
NP-Complete [Garey and Johnson, 1979]. However, we will show that there
is a polynomial time algorithm that can identify many communities (but not
all). This isn’t as much of a sacrifice as it would seem because the procedure’s
limitation is that it can only find communities that have a high degree of
intra-community weight and a low degree of inter-community weight, that is,
the communities that it is limited to finding are in fact “strong” communities.

The COMMUNITY procedure is shown in Table 2. Its input is a graph G, a
set of “seed” Web sites S, and a single parameter, ,, which will be explained
in greater detail in the next subsection. The procedure creates a new graph,
G4, that has two artificial vertices, s and ¢. The source vertex, s, is connected
with infinite capacity to all pages in the seed set, S. The sink vertex, t, is
connected to all original vertices with a small capacity specified by a.

After constructing, G4, the procedure calls MAX-FLOW as a subroutine,
and uses the resulting residual graph to return to portion of R that remains
connected to s. This connected component is guaranteed to be a community
as defined by Definition 1, provided that the algorithm has not termited with
the trivial cut of simply disconnecting all v in S from the rest of the graph.

Table 3 and Table 4 contain two related algorithms, APPROXIMATE-
COMMUNITY and COMMUNITY-CLUSTER, respectively (the latter referred to
as “cut clustering in [Missing, ]), both of which use COMMUNITY as a sub-
routine. Procedure COMMUNITY is appropriate when the entire graph can be
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Table 2. The Community Algorithm.

1 procedure COMMUNITY(graph: G = (V, E); set: S; real: o)
2 set V, «— V U{s,t}
3 set B, «— EU{(v,t):veV}U{(s,u):u€e S}
4 set ¢(v,t) «— a,Yv €V
5 set ¢(s,u) ¢— oco,Yu € S
6 set Go «— (Va, Eq)
7 set R <— MAX-FLOW(Ga, s, t)
8 set X +— members of smallest connected component about s in R
9 return X — {s}
10 end procedure
Table 3. The Approximate Community Algorithm.
1 procedure APPROXIMATE-COMMUNITY (set: S: integer: k)
2 while number of iterations is less than desired do
3 set G to a crawl from S of depth k
4 set a +— ||
5 set X +— COMMUNITY(G, S, a)
6 rank all v € X by number of edges in X
7 add highest ranked non-seed vertices in X to S
8 end while
9 return X
10 end procedure
Table 4. The Community Clustering (or Cut Clustering) Algorithm.
1 procedure COMMUNITY-CLUSTER(graph: G = (V, E); real: a)
2 set S+—V
3 while 3s € S do
4 set X <— COMMUNITY(G, {s}, @)
5 for all v € X do
6 set cluster(v) «— s
7 end for
8 set S+—S-X
9 end while
10 return cluster labels of v € V
11 end procedure

15
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V=X

Fig. 4. Inter-community and intra-
community cut bounds: X C V is
any community and PUQ = X
is any possible partitioning of X.
f(P,Q) is an intra-community cut
value, and f(X,V — X) serves as an
upper-bound on inter-community
cuts.

contained in memory and only a single community is required. Procedure
APPROXIMATE-COMMUNITY is appropriate when only a small portion of the
graph can be contained in memory. It uses a fixed depth crawl to calculate an
approximate community, then uses the “strongest” members in the community
to be new seeds for a subsequent iteration. Procedure COMMUNITY-CLUSTER
can be used to find all communities in a graph. Hence, the last procedure is
only appropriate when all communities are desired and the entire graph can
be maintained in memory.

5.3 Analysis

Having formally defined the community algorithm, we can now make some rig-
orous statements regarding the quality of maximum flow communities relative
to inter- and intra-community weight. But first, some definitions.

Let the maximum flow value between s and ¢ be represented as f(s,t).
We denote the edge cut set that separates s and ¢ with total weight f(s,t) by
C(s,t) C E. Removing the cut set C(s,t) from E will always leave at least
two connected components: one that contains s and the other that contains
t. The maximum flow always has the following relationship to the cut set:

f(s,t) = Z c(u,v). (15)

(u,v)EC(s,t)

Finally, we can generalize the meaning of C'(-) and f(-) so that their arguments
range over sets of vertices. In this case, C(S,T') will be the edge cut set of
minimal capacity that separates all vertices in S from all vertices in 7', and
f(S,T) is the maximum flow or minimum cut value between the two vertex
sets.

Recall that the COMMUNITY procedure uses a single parameter, o, which
serves as the capacity between all vertices and the artificial vertex, ¢, added
to G. The main theoretical result [Missing, ] for the Community Algorithm
follows and is made with reference to Figure 4.

Theorem 1. Let X be a community found by procedure COMMUNITY with
value a. For any P and Q such that PUQ = X and PN Q =g, the following
bounds will always hold:
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flz,V -X) f(P,Q)
Vx| == mn(P, Q)

IN

Proof of the theorem is beyond the scope of this chapter, but the complete
proof can be found in [Missing, ].

In a nutshell, Theorem 1 shows that « serves as an upper-bound for the
inter-community edge capacity, and a lower-bound for the intra-community
edge capacity. Thus, the community algorithm simultaneously guarantees that
community members are relatively densely connected to one another but rel-
atively sparsely connected to non-community members.

Also notice that these bounds show how a can be used to tune the size
and number of identified communities. A small choice for a, say close to zero,
can yield just one community that comprises the entire graph. A large value
for o, say a =1+ 32, ,yep c(u,v), will yield n singleton communities.

Ironically, the strength of the bounds of the community algorithm is in
some sense its main weakness. It is possible that there exists a community that
obeys Definition 1 but cannot be found because it fails to obey the bounds in
Theorem 1. Nevertheless, this price basically means that the algorithm will
only find the best communities, where “best” is in terms of the bounds.

Looking back to Table 4, where the COMMUNITY-CLUSTER procedure is
defined, we can make a few more interesting statement about how communities
relate to one another. For any two identified communities, X,, and X,, found
by using a seed set of one vertex in each case (u and v), either X,, N X, = g,
X, C X,, or X, C X,, must be true. In other words, communities must nest
with one another, forming a hierarchy. This nesting property has been used
as a heuristic to speed up the COMMUNITY-CLUSTER [Missing, ].

5.4 Discussion

The real trick behind the COMMUNITY procedure is the transformation of G
that is performed in lines 2—6 in Table 2. The new graph, G, has flow and cut
properties that are similar to G. However, the artificial sink, ¢, is nearly identi-
cal to the centroid of G’s minimum cut tree (a cut tree is a data structure that
preserves all cut and flow properties of a graph; see [Gomory and Hu, 1961]
for more details). This means that using ¢ as a sink for an s-t maximum flow
calculation is similar to extracting the subtree of G’s cut tree that contains s.

Recall that the “teleportation” step in PageRank is required to keep the
dynamics of the iterative system well-behaved; without it, excess rank could
accumulate to pages that have no out-bound links. Almost the exact same
correction could be achieved by introducing an artificial vertex which is con-
nected to every other vertex with some small weight or capacity (and in both
directions). Thus, a random walker at any vertex would have some small prob-
ability of jumping to the artificial vertex. Similarly, a random walker at the
artificial vertex could jump to any other vertex with equal probability. In this
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(a) (b) (c)

Fig. 5. Three similar graphs with different cut and spectral properties: (a) two
halves separated by a single short path, (b) two halves separated by a single long
path, and (c) two halves separated by multiples long paths.

way, PageRank is similar to the flow-based Community Algorithm in that
both use artificial transitions (via “teleportations” or the artificial edges) to
stabilize a calculation.

A significant difference between the flow and spectral methods is in how
they treat distances in graphs. HITS and PageRank are sensitive to the dis-
tance of the paths that join different parts of a graph. The flow-based Com-
munity Algorithm has no sensitivity to path distance whatsoever. For both
spectral methods, a page is a community member if the probability of a ran-
dom walker visiting the page is above some threshold. For the flow method,
a page is a community member if it has more unique paths to community
members than to non-community members.

These differences are best visualized with the help of Figure 5. To a flow
algorithm, (a) and (b) look identical because the two halves can be discon-
nected by removing one edge (and the flow is also the same). But to a random
walker, (a) and (b) look very different because moving between the two halves
is much harder in (b) because a long path must be traversed.

By way of comparison, (a) and (c) look very different to a flow algorithm
because both the cut and the flow between the two halves are very different.
Yet to a random walker, (a) and (c) are similar because the redundant paths
in (c) make up for the fact that the individual paths are long.

The spectral and flow methods also differ in that the spectral methods ap-
ply a threshold to page scores after the main portion of the algorithm to decide
community membership, while the Community Algorithm has its equivalent
parameter accounted for at the start of the algorithm. This difference may
have implications for both runtime and quality of results.

In the end, each approach has implicit assumptions builtin that make
each more practical than many classical clustering or partitioning algorithms;
however, the implicit assumptions have implications for how and when each
approach makes a mistake.
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Table 5. Members of the 9/11 community that contain the word “Howstuffworks”.

o Howstuffworks "How Airport Security Works”

o Howstuffworks "How Biological and Chemical Warfare Works”
o Howstuffworks ”How Black Boxes Work”

e Howstuffworks ”How Building Implosions Work”
e Howstuffworks How Cell Phones Work”

o Howstuffworks ”How Cipro Works”

e Howstuffworks "How Cruise Missiles Work”

e Howstuffworks ”How Emergency Rooms Work”
o Howstuffworks "How Machine Guns Work”

e Howstuffworks "How NATO Works”

o Howstuffworks ”How Nostradamus Works”

o Howstuffworks "How Nuclear Bombs Work”

o Howstuffworks "How Skyscrapers Work”

o Howstuffworks "How Stun Guns Work”

e Howstuffworks ”How the U.S. Draft Works”

o Howstuffworks "How Viruses Work”

Table 6. Members of the 9/11 community that contain the word “Who”.

e BBC News — SOUTH ASIA — Analysis: Who are the Taleban?

e BBC News — SOUTH ASIA — Who are the Taleban?

e BBC News — SOUTH ASIA — Who is Osama Bin Laden?

o CNN.com - Backgrounder: Who is bin Laden, al Qaeda? - December 12, 2001

o Countries Need To Plan Effectively for ” Deliberate Infections” - WHO Leader Urges
Health Ministers

o DefenseLINK News: Bush: No Distinction Between Attackers and Those Who Har-
bor Them

e EIRC is working on a list of Resources to assist school staff respond to the needs of
students and their families who may be impacted

e FEMA: Message to All Who Want to Volunteer or Make Donations from FEMA
Director Joe M. Allbaugh

o Forbes.com: Who Is Osama Bin Laden?

e frontline: hunting bin laden: who is bin laden?: a biography of osama bin laden

e Guardian Unlimited — The Guardian — Man whose job is to keep America safe

e Scoop: David Miller: Who is Osama bin Laden?

¢ THE WORLD TRADE CENTER BOMB: Who is Ramzi Yousef? And Why It
Matters - The National Interest, Winter, 1995/96

e U.S. to Assist Those Who Seek a Peaceful, Economically Developed Afghanistan

e Who did it? Foreign Report presents an alternative view

e Who is Osama bin Ladin?

e Who’s Clueless?

e Who’s OK? - WorldTradeAftermath.com

Table 7. Members of the 9/11 community from CNN.com published in 2002.

o CNN.com - Daniel Pearl, 38, reporter, expectant father - February 22, 2002

o CNN.com - Detainees treated humanely, officials say - January 23, 2002

o CNN.com - Guantanamo Bay in U.S. control over 100 years - January 10, 2002

e CNN.com - Police: Tampa pilot voiced support for bin Laden - January 7, 2002

o CNN.com - States eye high-tech drivers’ licenses - February 17, 2002

e CNN.com - Student Bureau: ’Suspicion’ - January 21, 2002

o CNN.com - U.S. journalist Daniel Pearl is dead, officials confirm - February 22, 2002
e CNN.com - Will anonymous e-mail become a casualty of war? - February 13, 2002
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Table 8. The top 150 text features of the 9/11 Web community. Underscores are
used to indicate the occurrence of white space between individual words. A prefix of
A, F, E, indicates that the term occurred in the anchor text, full text, or extended

anchor text of a page.

mmMATEET TR E R MMM ME T MMM E MMM E AT TET TN YT TN E T T

1-50

terrorism
terrorist_attacks
bin_laden
terrorism
taliban
on_terrorism
in_afghanistan
osama
terrorism_and
osama_bin
terrorism
osama_bin laden
terrorist
afghanistan
against_terrorism
the_taliban
terrorist
to_terrorism
state_gov
anthrax
terrorist_attack
world_trade_center
the_attack
terrorists
terrorist
attacks

afghan

laden
war_on_terrorism
terror
afghanistan
homeland
the_world_trade
on_america
the_terrorist_attacks
terrorism http
the_terrorist
emergency

of _afghanistan
the_attacks
the_september_11
september_11th
wtc

of _terrorism
attacks
www_state_gov
sept_11
terrorism
attacks_on_the
qaeda

TR RETET TR TR E TR ITIETEEET

51-100

al_qaeda

fbi

wtc

laden

attack
attacks_on
terrorism http_wuw
afghanistan_and
attack_on_america
of _terrorist
bin_laden
trade_center
afghan
afghanistan

of _september_11
world_trade
the_pentagon
war_against
war._on

defense
september_11
president_bush
september_11
bbc_co_uk

bbc_co

pentagon

bbc
september_11_2001
attack_on
bombing

attacks
aftermath
www_state
http_www_state
department _of_state
112001

islam

red_cross
response

muslim

http news
islamic

muslims

fbi

attack
attack_on_the
september_2001
terror

foreign policy
of_september

MEmTTTTEEETIT TR I T T e

101-150

pakistan

mil
the_september
september
national_security
bbc

arab

of _war
state_department
victims_of

iraq

briefing
victims
tragedy
military
attack

war

events_of

cnn

white_ house
warfare
politics

iran

of _defense
against
department_of _defense
bush

saudi

armed

disaster
weapons
u_s_government
s_government
law_enforcement
destruction
the_events
middle_east

of _state
threats

human _rights
us

middle

asia

civilian
speeches
washington post
violence
america.s
america

sept

HHEET TR ETET MMM EI A ME T e M e R TR T T T

151-200

security
on_september
u_s_department
crisis
emergency
americans

2001

11th

the middle_east
troops

911

war

threat

cia

the_war
government

of us
s_department_of
united nations
in new_york
law

center_and
enforcement
pubs

federal
2001_the
defense
united
military
radio
secretary_of
s_department
of _international
justice
new_york

of u
congressional
crime

relief

killed
archives
coalition
trade
york_times
new_york_times
nations
september
the_nation
and_security
nation
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5.5 Experimental Results

To illustrate how the flow-based Community Algorithm works in practice, we
used APPROXIMATE-COMMUNITY to identify a set of Web sites dealing with
the topic of September 11, 2001 (i.e., the 9/11 community). Ten Web pages
were used as seed sites, and the algorithm was run for four iterations. After
completion, the community consisted 6257 Web sites.

Tables 5, 6, and 7 show three different samples of the community. Table 5
shows pages from the site Howstuffworks. Table 6 shows all pages that have
the word “Who” in the title. Table 7 is a list of all pages from CNN.com
published in 2002.

While it is impossible to enumerate all members of the 9/11 Web com-
munity, it is interesting to see how highly relevant the members appear to be
based on these samples. Had we simply enumerated pages which has the word
“Bin Laden” in it, there would be no surprise that some results seem relevant.
However, these three tables indicate how the content varies when looking at
specific sites, extremely general words, and relatively new additions to the
community.

As can be seen, the Howstuffworks result are very relevant to 9/11 but
in a very subtle and non-trivial manner. The pages with “Who” in the title
appear to have a single outlier (“Who’s Clueless”), yet this Web site had
was topically focused on the events of 9/11 at the time that this experiment
was conducted. Finally, the CNN.com pages show that newer pages in the
community maintained relevance to the central theme.

Finally, Table 8 shows the top m-grams found in members of the 9/11
Web community, ranked by their ability to disambiguate community members
from non-community members. (In this case, we used the simplistic ratio of
the probability of occurring in the 9/11 community versus the probability of
appearing in a random set of pages.) As can be clearly seen, the n-grams in
the table are all highly related to 9/11 with no obvious outliers. These results
support the main claim that one can identify large Web communities that are
topically and textually focused with methods that use hyperlinks and no text.

More information on the 9/11 community is available at:

http://webselforganization.com/example.html

which allows one to browse the entire community and to search the community
for specific words.

6 Conclusions
We have explored several different methods for identifying communities on the

Web. While all of these methods differ from one another, there are interesting
connections between many of the methods; for example:
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e Bibliometric methods define a notion of similarity for pages that do not
directly link to one another.

e Bipartite cores consist of pages that have high bibliographic metrics with
respect to each other.

e HITS identifies hubs and authorities, which are pages that often fulfill the
definition of a bibliographic core.

e PageRank and HITS both have a spectral and random walk interpretation
relative the Web graph.

e PageRank and the flow-based Community Algorithm, both use a nearly
identical artificial transition for stabilizing each respective calculation.

We also saw how some of the approaches related to more traditional clus-
tering algorithms and how in some cases tight theoretical bounds could be
derived for global and local community properties.

Further Explorations

There are many open areas within the field of Web data mining that are
directly related to the task of identifying Web communities:

Combine Text with Hyperlinks

Probabilistic versions of HITS have been used [Cohn and Hofmann, 2001] that
treat hyperlinks and text on equal footing. There is an opportunity to do the
same for the flow-based Community Algorithm. In particular, it would be
interesting to see if text and hyperlinks could be combined in such a way that
accounts for varying word frequencies.

Unite PageRank and the Community Algorithm

The Community Algorithm normally operates over unit capacity edges. How-
ever, there has been some interesting success in normalizing edge capacity by
out-degree (before discarding edge direction) [Missing, ]. An extension of this
idea would use PageRank to calculate a probability of an edge transition, then
use rescaled probabilities for capacity values. It would also be interesting if
this procedure yields more satisfactory bounds on community quality because
it may be possible to express the bounds in terms of an absolute probability
of moving from one community to another (instead of flow or cut values).

Flow Communities of a Bibliographic Matrices

One may also be able to apply the Community Algorithm to AT A, AAT,
or some other related matrices. It is not clear when or if this would be a
benefit, nor what the precise theoretical interpretation of the resulting com-
munities. Nonetheless, these communities may be more appropriate for very
sparse graphs.
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Generalize the Community Algorithm for Arbitrary Cohesiveness

It has been suggested [Flake et al., 2000] that one can generalize the Com-
munity Algorithm so that it finds communities that obey the definition that
members have x% of their links to other members, instead of the standard
50%. Generalizing the algorithm in this manner would require more extensive
use of artificial vertices and edges; however, it may yield a more satisfying
results and more interesting bounds.

Use Randomized Algorithms for Improved Speed

While flow algorithms have been steadily improving, there exist approximate
and randomized flow algorithms that may improve performance on large-scale
problems. In particular, it would be interesting to implement such an algo-
rithm that could operate on a graph with only linear scans of the adjacency
matrix.

Automate the Search for o

Because the Community Algorithm’s a parameter reflect a trade-off between
community size and the number of communities in a graph, there would be
considerable value in automating the search for a. There exists newer flow
algorithms (on paper) that can perform this search in time proportional to
a single s-t maximum flow calculation; however, there is no implementation
known to exist at this time.

Reconcile Bounds for Spectral and Flow Partitions

Finally, there are many well-known bounds for spectral clustering which use
the so-called Laplacian matrix (instead of the adjacency matrix). It would be
of value to reconcile the spectral bounds with the flow bounds.
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